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Abstract
Gluten-sensitive enteropathy, also known as coeliac 
disease (CD), is an autoimmune disorder occurring in 
genetically susceptible individuals that damages the 
small intestine and interferes with the absorption of 
other nutrients. As it is triggered by dietary gluten and 
related prolamins present in wheat, rye and barley, the 
accepted treatment for CD is a strict gluten-free diet. 
However, a complete exclusion of gluten-containing ce-
reals from the diet is often difficult, and new therapeutic 
strategies are urgently needed. A class of proteins that 
have already emerged as drug targets for other auto-
immune diseases are the heat shock proteins (HSPs), 

which are highly conserved stress-induced chaperones 
that protect cells against harmful extracellular factors. 
HSPs are expressed in several tissues, including the 
gastrointestinal tract, and their levels are significantly 
increased under stress circumstances. HSPs exert im-
munomodulatory effects, and also play a crucial role in 
the maintenance of epithelial cell structure and function, 
as they are responsible for adequate protein folding, 
influence the degradation of proteins and cell repair 
processes after damage, and modulate cell signalling, 
cell proliferation and apoptosis. The present review 
discusses the involvement of HSPs in the pathophysiol-
ogy of CD. Furthermore, HSPs may represent a useful 
therapeutic target for the treatment of CD due to the 
cytoprotective, immunomodulatory, and anti-apoptotic 
effects in the intestinal mucosal barrier.
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Core tip: The only current effective therapy for the 
treatment of coeliac disease (CD) is a gluten-free diet. 
However, therapies targeting heat shock proteins (HSPs) 
for the treatment of various autoimmune disorders and 
cancers have been developed and have shown promis-
ing results. As CD is an autoimmune disorder, these 
new therapies may prove beneficial as an alternative 
treatment strategy. This review highlights and discusses 
recent data concerning the involvement of HSPs in the 
pathophysiology of CD.
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INTRODUCTION
Coeliac disease (CD), or gluten-sensitive enteropathy, is 
an autoimmune inflammatory disorder characterized by 
partial or total villous atrophy and crypt hyperplasia of  
the small intestine in genetically predisposed patients. 
Ninety-five percent of  affected individuals carry one of  
two specific human leukocyte antigen (HLA) class II al-
leles, either DQ2 (HLA-DQA1*05-DQB1*02) or DQ8 
(HLADQA1*03-DQB1*0302)[1-4]. Since dietary gluten 
and related prolamins are present in different types of  ce-
reals (wheat, barley and rye), medicines, and various other 
products, including stamp and envelope adhesives, a 
lifelong exclusion of  gluten presents a considerable chal-
lenge for patients with CD[5,6]. Although the worldwide 
incidence of  CD has continued to increase over the past 
decade, most cases remain undiagnosed[7]. The increased 
incidence suggests that the disease manifestation is simi-
lar to that of  other immune-mediated diseases, such as in-
flammatory bowel disease (IBD), allergies or asthma, and 
results from a combination of  genetic predisposition and 
environmental factors. This hypothesis is supported by 
the fact that CD is often first detected following physical 
and emotional stress, such as from surgery, pregnancy, or 
viral infection[8]. Heat shock proteins (HSPs) are known 
to exert immunomodulatory effects, and have thus been 
targeted for the treatment of  autoimmune disorders. 
Recent evidence suggests that the expression of  HSPs is 
altered in CD. This review presents and discusses the role 
of  HSPs and various stress factors in the pathophysiol-
ogy of  CD.

EFFECT OF STRESS ON THE 
PATHOGENESIS OF CD
Stress represents an acute threat to an organism, which 
initiates and mediates the physiological adaptations neces-
sary to maintain homeostasis and ensure survival[9]. Stress 
can be caused by intrinsic factors, such as genes and 
endoplasmic reticulum stress, or extrinsic factors, such 
as heat, toxins, radiation, infection, mechanical force and 
metabolic disturbances. Stress factors affecting the gas-
trointestinal tract may induce inflammation and reduce 
its motility[10], resulting in disrupted mucosal integrity and 
impaired epithelial barrier function[11,12]. Such changes 
can lead to the development of  CD in genetically predis-
posed individuals[13].

In CD, the transport of  incompletely digested wheat 
gluten peptides, such as gliadin, across a damaged epi-
thelial layer into the lamina propria[14] triggers oxidative 
stress and the release of  pro-inflammatory cytokines[15]. 
However, gluten can induce adaptive as well as innate im-
mune responses, such as enhancing the production of  in-
terleukin (IL)-15 in epithelial cells, which also leads to cell 
damage through the activation of  intraepithelial cytotoxic 
CD8+ T-cells[16,17]. Activated transglutaminase 2 enzymes 
in the lamina propria[18] deamidate neutral glutamine 
residues of  gluten, thus creating epitopes with increased 

immunostimulatory potential[16]. These deamidated pep-
tides are presented to CD4+ T-helper cells by the disease 
associated HLA-DQ2 and -DQ8 molecules from macro-
phages, dendritic cells (DCs) and B lymphocytes[19], which 
promote the differentiation of  B-cells producing anti-
gliadin and anti-transglutaminase 2 antibodies[20]. T-cells 
may also produce pro-inflammatory cytokines, such as 
tumour necrosis factor (TNF)-α and interferon (IFN)-γ, 
and activate intestinal fibroblasts leading to further dam-
age of  the epithelial cell layer, mucosal matrix degrada-
tion and tissue remodelling[18]. Moreover, gliadin peptides 
can directly activate pattern recognition receptors such 
as Toll-like receptor (TLR) 2 and 4 on macrophages and 
DCs[21], leading to a further upregulation of  proinflam-
matory cytokines and chemokines[22] (Figure 1). These 
inflammatory effects of  stress lead to additional aggrava-
tion of  the disease[23].

DEFENSE AGAINST STRESS: ROLE OF 
HSPs
Stress results in the activation of  various proteins such 
as proteolytic system components, RNA/DNA modify-
ing enzymes, metabolic enzymes, regulatory, transport, 
detoxifying and membrane-modulating proteins, and 
molecular chaperones, or HSPs[24]. HSPs were first dis-
covered in Drosophila melanogaster in the early 1960s[25], 
and have since been observed in all organisms after 
exposure to cellular stresses[26], such as heat, UV light, 
cytotoxic agents[27,28], and nutritional (e.g., the absence of  
glucose and glutamine)[29] and oxidative stress[30]. HSPs 
are expressed in many tissues, including heart[31], brain[26], 
muscle[32], lung[33], kidney[34], liver[35], and intestinal and co-
lonic epithelium[36]. These highly conserved molecules are 
responsible for maintaining adequate protein folding[37] 
and influencing the degradation of  proteins[38] and cell 
repair processes after damage[39]. Furthermore, HSPs are 
involved in the modulation of  immune responses[40,41], 
autoimmunity[27], cell signalling[42], cell proliferation[43], ap-
optosis[44], and tumour cell differentiation and invasion[45]. 
Based on their molecular weight they can be classified 
into six major families: small HSPs (molecular weight < 
30 kDa), HSP60s, HSP70s, HSP90s, HSP100s[24,46], and 
other non-ubiquitous HSPs[47] (Table 1).

Oxidative stress and HSPs
Environmental and chemical agents inducing oxidative 
stress can enhance the generation of  reactive oxygen 
species (ROS)[48,49]. In CD, gluten itself  can promote the 
generation of  ROS by stimulating the expression of  the 
inducible form of  nitric oxide synthase (iNOS) and in-
creasing nitric oxide levels[50,51]. This process contributes 
to subsequent mucosal damage and villous atrophy of  the 
small intestine[52]. Interestingly, these same oxygen-free 
radicals, such as superoxide, also induce the expression of  
various HSPs which take part in the defence against oxi-
dative stress[53]. The inducible form of  HSP70 (HSP70i) 
reduces iNOS expression by specifically binding to iNOS 
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and its transcription factor Krueppel-like factor 6[54]; 
moreover, its upregulation was shown to inhibit nuclear 
factor (NF)-B activation, thereby providing cellular pro-

tection against stress[55]. In addition, glutamine-induced 
HSP72 was shown in vivo to protect against endotoxin-
induced shock injury[56], and HSP90 has been shown 
to exert antioxidative and anti-apoptotic effects against 
chemical-induced hypoxic injury[57]. HSP60 contributes 
to the protection of  small intestine by enhancing the cy-
toprotective function of  intestinal epithelial cells against 
H2O2-induced injury[58]. Finally, HSP32, also known as 
heme oxygenase-1, degrades heme into vasoactive carbon 
monoxide, free iron and biliverdin, and is also a potent 
antioxidant[59].

Inflammation and HSPs
HSPs can act as “danger signals” for the immune system 
at sites of  tissue injury[60]. HSPs were shown to contrib-
ute to antigen presentation and the proliferation and 
activation of  macrophages and DCs[61], and natural killer 
cells[62]. HSP70 and HSP90 bind to TLRs on the surface 
of  DCs and macrophages[63] resulting in enhanced ex-
pression of  pro-inflammatory cytokines[64,65], and HSP60 
stimulates the release of  TNF-α, IL-12, and IL-1β, via 
TLR 4 signalling[66]. However, HSP60 can also activate 
anti-inflammatory processes through TLR 2 signalling, 
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Figure 1  Key processes during the pathogenesis of coeliac disease. In the lamina propria. A: Gluten-derived gliadin peptides deamidated by tissue transgluta-
minase (tTG) are presented to T-cells by antigen presenting cells (APC). This process leads to the activation of anti-gliadin and anti-tTG antibody producing B-cells 
and other T-cells promoting the activation of intestinal fibroblasts (FB). Furthermore, gliadin enhances the production of IL-15, which activates intraepithelial T lympho-
cytes (IEL); B: Gliadin peptides can directly activate Toll-like receptor (TLR) 2 and 4 on macrophages (MF) and dendritic cells (DC), resulting in increased production 
of proinflammatory cytokines (Reproduced with permission from Sziksz et al[1]).
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Table 1  Classification of heat shock proteins[46,113]

Family Subunit MW 
(kDa)

Family 
members

Cellular localization

HSP100   80-110 HSP100, 
HSP104

Cytoplasm, nucleus, 
mitochondria, plasma 

membrane
HSP90 82-96 HSP90α, 

HSP90β
Cytoplasm, nucleus, 

mitochondria, endoplasmic 
reticulum

HSP70 67-76 HSP70, HSP72, 
HSP73, HSP80

Cytoplasm, nucleus, 
mitochondria, endoplasmic 

reticulum, lysosomes, 
extracellular compartments

HSP60 58-65 HSP60, HSP65 Mitochondria
Small HSPs   8-40 αB-crystallin, 

HSP25, HSP27, 
ubiquitin

Cytoplasm, nucleus

Others (not 
ubiquitous)

Various HSP33 Various

MW: Molecular weight; HSP: Heat shock protein.
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HSP72 directly binds and stabilizes other tight junction-
associated proteins on colonic epithelial cells, such as 
zonula occludens[90]. Other HSPs, including members of  
the HSP110 subfamily, have also been shown to bind to 
junctional proteins[91]. Tissue integrity is also influenced 
by matrix metalloproteinases (MMPs)[92], which have been 
observed as increased in intestinal tissues of  patients 
with CD[93]. Extracellular HSP90α was shown to activate 
MMP-2, which was enhanced by HSP70 and HSP40, 
leading to increased cell migration[94]. HSP60 may also 
induce MMP production in macrophages[95].

HSPs AND CD
HSPs are differentially expressed throughout the gastro-
intestinal tract, with gastric and colonic epithelial cells 
showing high expression of  HSP25 and HSP72, likely 
the result of  continuously low acidic pH, mechanical 
stress and/or bacterial fermentation[96]. In contrast, the 
expression of  HSPs in the small intestine is normally 
negligible[97], but the expression of  HSP25 and HSP70 
is markedly increased under stress[88]. The predominant 
localization of  HSPs in intestinal epithelial cells sug-
gests their primary role is in maintaining the integrity 
of  the enterocyte layer, as demonstrated by Kojima et 
al[98] who showed that Bacteriodes fragilis treatment of  
young adult mouse colonocyte cells increased the expres-
sion of  HSPs mediated by lipopolysaccharide and other 
bacteria-derived factors. Using horseradish peroxidase to 
evaluate human intestinal epithelial permeability, Yang et 
al[99] found that heat stress increased transport across an 
epithelial monolayer, which was inhibited by pretreatment 
with HSP70. Asea[65] and Cario et al[100] provided further 
supporting evidence by showing that HSP70 can behave 
as a ligand for TLR 2 and TLR 4[101], the activation of  
which can contribute to the maintenance of  intestinal 
barrier function by preserving the integrity of  tight junc-
tion proteins, such as zonula occludens 1, under stressful 
conditions.

The role of  HSPs in the pathophysiology of  CD is 
not well understood, owing in part to the lack of  experi-
mental models. However, our lab has shown increased 
mRNA and protein expression of  HSP72 in the duo-
denal mucosa of  children newly diagnosed with CD[102]. 
The most abundant expression of  HSP72 was in villous 
enterocytes of  the epithelium and immune cells of  the 
lamina propria. Clinical symptoms were reduced with a 
gluten-free diet (GFD), which also reduced the level of  
intestinal HSP72, though levels were still higher than in 
control individuals. In contrast, Brottveit et al[103] reported 
that suspension of  a GFD for three days did not alter the 
mRNA expression of  HSP70 or HSP27 in the mucosa 
of  adult CD patients. This apparent discrepancy may be 
due to the difference in patient age, or in the experimen-
tal setting, for example, comparing the effect of  dietary 
gluten elimination in newly diagnosed CD patients vs 
the return of  dietary gluten in patients maintained on a 
long-term GFD. Iltanen et al[104] found elevated expres-
sion of  mitochondrial HSP65 in 80% of  jejunal biopsies 

upregulating the suppressive function of  regulatory T-cells 
and shifting the cytokine secretion balance toward a Th2 
phenotype[67,68], suggesting that the immunomodulatory 
effect can be cell and receptor type specific.

Altered expression of  HSPs has been associated with 
intestinal inflammation. An increased epithelial expres-
sion of  HSP70, HSP60 and HSP10 was observed in the 
colonic mucosa of  patients with IBD[69,70]. This upregula-
tion may be protective, as Tanaka et al[71] demonstrated 
that transgenic mice overexpressing HSP70 showed 
reduced apoptosis and suppressed expression of  pro-
inflammatory cytokines after dextran sulfate sodium-
induced colitis. HSP47, a collagen-specific molecular 
chaperone, was also found in mesenchymal and submu-
cosal cells in a murine model of  colitis[72].

Apoptosis and HSPs
Apoptosis is essential for the maintenance of  intestinal 
epithelial function, as it regulates the normal turnover of  
enterocytes[73]. The increased apoptosis of  enterocytes 
in CD contributes to villous atrophy, which is mediated 
either by the direct toxicity of  gliadin domains or by the 
gliadin-dependent activation of  intraepithelial and lamina 
propria lymphocytes[74]. Gliadin-induced apoptosis can be 
blocked by Fas cascade inhibitors[75], although the activa-
tion of  the Fas system can also contribute to cell survival 
in the gut by inducing the expression of  HSP72 and 
HSP72-driven chemokines[76]. HSP70 can also promote 
cell survival by inhibiting the mitochondrial transloca-
tion of  Bax and subsequent release of  cytochrome c and 
activation of  caspase-9 and -3[77,78], an intrinsic apoptotic 
pathway that is initiated by intracellular stress signals[79]. 
Furthermore, HSP70 is a natural inhibitor of  c-Jun 
N-terminal kinase[80] and is also a modulator of  the cal-
cium signalling that play major roles in the regulation of  
apoptosis[80-83]. Furthermore, HSP60 has been identified 
as a novel mitochondrial permeability transition regula-
tor. HSP60 is a component of  a mitochondrial multi-
chaperone complex that includes HSP90 and its related 
molecule TNF receptor-associated protein 1, which asso-
ciates with and antagonizes the pro-apoptotic, mitochon-
drial permeability transition pore modulator, cyclophilin 
D, thereby contributing to the preservation of  organelle 
integrity and prevention of  cell death[84,85].

Intestinal epithelial integrity and HSPs
The intestinal mucosa forms a barrier that is essential 
for defending the intestine against the harmful effects 
of  different stressors. Oxidative stress, inflammation 
and increased apoptosis all lead to mucosal damage and 
increased permeability[86]. The integrity of  the epithelial 
barrier is determined by an apical junctional complex 
composed of  tight and adherent junctions[87]. During 
heat stress, HSPs play a pivotal role in the preservation 
of  the intestinal barrier by promoting the upregula-
tion of  the tight junction protein occludin[88,89]. HSP70s 
protect intestinal epithelial cells by preserving the integ-
rity of  the actin cytoskeleton and cell-cell contact, and 
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from children diagnosed with CD compared to 24% of  
specimens from children with a normal biopsy. The levels 
of  HSP65 correlated with the number of  + T-cells and 
serum IgA endomysial autoantibodies, suggesting that 
HSP65 may be an indicator of  disease activity. Yeboah 
et al[105] examined the duodenal mucosa of  CD patients 
and found a close correlation between the distribution 
of  the small HSP αB-crystallin and the degree of  villous 
atrophy, indicating its involvement in the modulation of  
mucosal integrity.

Single nucleotide polymorphisms in the 5’ regulatory 
region of  the gene encoding HSP70-1 (HSPA1A) have 
been linked with CD. Ramos-Arroyo et al[106] found a sig-
nificantly higher frequency of  an HSPA1A allele showing 
an intermediate electrophoretic mobility in patients with 
CD. Individuals expressing CD-associated HLA alleles 
that were homozygous for this intermediate HSPA1A 
allele were 12-fold more likely to develop CD, indicating 
that HSPA1A polymorphisms are an additional predis-
posing factor for CD as a component of  a high-risk hap-
lotype. Partanen et al[107] found significantly deviated gene 
frequencies of  the HSPA1B (HSP70-2) gene cluster in 19 
families of  patients with CD compared to that of  a nor-
mal population, indicating that a polymorphism of  the 
HLA-linked HSPA1B gene may be involved in the patho-
physiology of  CD. The main scientific findings indicating 
involvement of  HSPs in CD are summarized in Table 2.

HSPs AND THERAPEUTIC TREATMENTS
Although promising results have been found using HSP-
based vaccines for the treatment of  cancer patients[108], 
relatively little is known about the therapeutic potential 
of  HSPs in the treatment of  gastrointestinal diseases. 
There is evidence to suggest, however, that targeting of  
HSPs would be beneficial. The anti-ulcer drug geranyl-

geranylacetone (GGA) that reduced colitis in a mouse 
model was found to induce the intestinal expression of  
HSP70 and to suppress myeloperoxidase activity and 
reduce TNF-α and IFN-γ levels[109]. Furthermore, it was 
demonstrated that the upregulation of  HSPs by GGA is 
protective against intestinal damage from non-steroidal 
anti-inflammatory drugs such as indomethacin[110]. In-
deed, overexpression of  HSP70 in mice decreased the 
number of  indomethacin-induced apoptotic cells and the 
level of  proinflammatory cytokines and chemokines (IL-
1β, IL-6) in the small intestine, suggesting that HSP70 is 
protective and can reduce the extent of  small intestinal 
lesions[36]. A strong correlation between the expression of  
HSPs and the advantageous effects of  probiotics in IBD 
has also been suggested[111], and probiotics containing 
eight different naturally occurring strains of  “beneficial” 
bacteria may induce the expression of  HSP25 and HSP72 
in colonic epithelial cells[88]. Moreover, probiotic Lactoba-
cillus GG induces the expression of  HSP72 in intestinal 
epithelial cells, contributing to the beneficial clinical ef-
fects through preservation of  cytoskeletal integrity[112]. 
These data suggest that HSP-inducers are promising 
drugs to treat gastrointestinal diseases, including CD, or 
ameliorate their symptoms.

CONCLUSION
HSPs are a class of  highly conserved, stress-induced 
chaperones that are responsible for proper protein 
folding and regulating protein degradation, cell repair, 
immune responses, cell signalling, cell proliferation, 
apoptosis, and tumour cell differentiation. The increased 
expression of  various HSPs observed in CD suggests 
that their antioxidant and anti-apoptotic features are 
protective. Furthermore, HSPs may be involved in the 
pathophysiology of  CD through their immunomodula-

Table 2  Involvement of heat shock proteins in coeliac disease

Samples Investigation Localization/major findings Ref.

Duodenal biopsies from 16 children 
with newly diagnosed CD, 9 maintained 
on GFD, 10 controls

HSP72 mRNA expression, protein 
level and localization

HSP72 mRNA and protein are increased in CD, and decreased 
by GFD. HSP72 was localized in villous enterocytes of the epi-
thelium and lamina propria immune cells

[102]

Duodenal biopsy specimens from 30 
HLA-DQ2 (+) NCGS and 15 CD patients 
maintained on GFD

HSP27 or HSP70 mRNA expression, 
before and after challenge with 
gluten-containing bread daily for 3 d

mRNA expression of HSP27 and HSP70 in the duodenal mucosa 
was not different in any of the groups

[103]

Jejunal biopsies from 78 children with 
clinical suspicion of CD

Epithelial HSP65 expression Increased mitochondrial HSP65 expression in the jejunal mucosa 
in 80% (16/20) of children with CD and in 24% (14/58) of non-
CD patients. Strong correlation between HSP65, γd + T-cells 
and serum IgA endomysial autoantibodies. HSP65 is a potential 
mucosal integrity modulator

[104]

Duodenal biopsies from 12 patients 
with CD and 10 controls 

Small HSP αB-crystallin expression 
and distribution

Increased αB-crystallin in CD, localized in the supra-nuclear 
region of enterocytes in the duodenal mucosa

[105]

Blood samples from 128 patients with 
CD and 94 healthy individuals

HSPA1A gene (HSP70-1) 
polymorphism

Altered frequency of an intermediate HSPA1A allele in CD 
(64.5%) vs normal (37.2%). HSP70-1 gene is part of a high-risk 
haplotype for CD

[106]

Blood samples from 19 families with CD 
patients and 95 healthy individuals

HLA-linked HSPA1B gene (HSP70-2) 
polymorphism

Altered HSPA1B allele frequencies in CD vs normal and non-
affected MHC haplotypes

[107]

CD: Coeliac disease; GFD: Gluten-free diet; HSP: Heat shock protein; NCGS: Non-coeliac gluten sensitivity; Ig: Immunoglobulin; HLA: Human leukocyte 
antigen; MHC: Major histocompatibility complex. 
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tory effects, serving as “danger signals” for the immune 
system at sites of  tissue injury.

Intrinsic apoptotic pathways initiated by intracellular 
stress signals can be blocked by HSPs, which likely con-
tributes to the maintenance of  intestinal homeostasis. 
HSPs suppress the expression of  iNOS and reduce the 
level of  nitric oxide, thereby providing cellular protec-
tion against stress. HSPs are also involved in tissue repair 
and remodelling by regulating the production of  matrix 
metalloproteinases in the intestine, which are increased 
in patients with CD. In conclusion, HSPs appear to influ-
ence the key features of  CD through their contribution 
to the maintenance of  mucosal barrier integrity, inhibi-
tion of  apoptosis, and regulation of  inflammatory pro-
cesses. Therefore, therapies targeting the expression of  
HSPs in the intestinal mucosa should be pursued for the 
treatment of  inflammatory gastrointestinal diseases.
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