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Importance of chronic fibroproliferative diseases (FDs) including pulmonary fibrosis, chronic kidney diseases, inflammatory bowel
disease, and cardiovascular or liver fibrosis is rapidly increasing and they have become amajor public health problem. According to
some estimates about 45% of all deaths are attributed to FDs in the developed world. Independently of their etiology the common
hallmark of FDs is chronic inflammation. Infiltrating immune cells, endothelial, epithelial, and other resident cells of the injured
organ release an orchestra of inflammatory mediators, which stimulate the proliferation and excessive extracellular matrix (ECM)
production of myofibroblasts, the effector cells of organ fibrosis. Abnormal amount of ECMdisturbs the original organ architecture
leading to the decline of function. Although our knowledge is rapidly expanding, we still have neither a diagnostic tool to detect
nor a drug to specifically target fibrosis. Therefore, there is an urgent need for the more comprehensive understanding of the
pathomechanism of fibrosis and development of novel diagnostic and therapeutic strategies. In the present review we provide an
overview of the common key mediators of organ fibrosis highlighting the role of interleukin-10 (IL-10) cytokine family members
(IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26), which recently came into focus as tissue remodeling-related inflammatory cytokines.

1. Introduction

The significance of chronic fibroproliferative diseases (FDs)
including pulmonary fibrosis, chronic kidney disease (CKD),
inflammatory bowel diseases (IBD), and cardiovascular or
liver fibrosis is rapidly increasing and they have become a
major public health problem [1]. According to current esti-
mates nearly 45%of all deaths are attributed to FDs; thus, they
are the leading cause ofmorbidity andmortality in developed
countries [2, 3].

Different FDs share common features such as chronic
inflammationwhich shows a correlationwith the progression
of fibrosis. In the injured organs chemotactic stimuli trigger
the rapid recruitment of immune cells including macro-
phages and neutrophils. These infiltrating immune cells then
produce numerous proinflammatory cytokines and growth
factors, which trigger the activation of myofibroblasts (MFs),

the main effector cells of tissue remodeling [4]. Under physi-
ological conditions remodeling leads to the almost complete
regeneration of the tissue without permanent traces of injury.
However, in the case of chronic FDs the sensitive balance
between the synthesis and degradation of extracellularmatrix
(ECM) components is disturbed, and the continuously acti-
vated MFs produce an excessive amount of ECM resulting in
the replacement of parenchymal tissue by connective tissues.
This chronic pathogenic remodeling process leads finally to
the destruction of normal organ architecture and consequent
decline of its function [5, 6].

Despite the unmet medical need there is no generally
accepted therapy to treat or hinder fibrosis. Since inflamma-
tion plays an unequivocal role in the development of fibrosis,
new therapeutic strategies targeting the inflammatory path-
ways may offer promising opportunities.Thus, the aim of the
present review is to summarize the main events of organ
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Figure 1: Hypothetical origin of myofibroblasts.

fibrosis with special focus on tissue remodeling-related
inflammatory mediators, highlighting the potential path-
omechanical role of the members of interleukin-10 (IL-10)
cytokine family.

2. Main Cellular Events of Organ Fibrosis

Chronic inflammation, as a common hallmark of FDs, is
initially represented by the recruitment of neutrophils and
macrophages; however, almost all immune cell types includ-
ing type 1 T helper (Th1), Th2, Th17, regulatory T (Treg) and
B lymphocytes, and eosinophil and basophil granulocytes
are involved in the process. These immune cells and also
the injured inherent cells of the affected organ, such as
endothelial and epithelial cells, release awide range of inflam-
matory cytokines and growth factors [7, 8] including IL-13
or transforming growth factor- (TGF-) 𝛽, which contribute
either to the maintenance of chronic inflammation [9] or to
the proliferation and enhanced ECM production of MFs.

MFs, as the main effector cells of organ fibrosis, are 𝛼-
smooth muscle actin (𝛼-SMA) positive, spindle, or stellate-
shaped cells lacking the epithelial or endothelial markers,
such as cytokeratins or cluster of differentiation (CD) 31
[10, 11]. Although the origin ofMFs is controversial, theymay
arise by the phenoconversion of different cell types including
fibroblasts [12], pericytes [13], stellate [14], smooth muscle
[15], epithelial [16], endothelial [17], and stem cells or cir-
culating progenitors [18–20] (Figure 1). After their activation
MFs proliferate and produce an excessive amount of different
ECM components including fibrillar collagens including
collagens I, III and glycoproteins such as fibronectin, fibrillin,
elastin, and proteoglycans [10] and nonfibrillar collagens
including collagen IV, a main component of the basal mem-
branes [21]. However, the relative contribution of the different

infiltrating and inherent cell types in the injured organ to the
formation of MFs is still not clear.

3. Main Inflammatory Mediators of
Organ Fibrosis

Chronic inflammation leads to the release of a wide range of
inflammatory mediators, which can contribute either to the
stimulation (profibrotic) or to the inhibition (antifibrotic) of
fibrosis (Table 1). In the present sectionwe discuss the biolog-
ical role of the most well-studied mediators in the complex
process of organ fibrosis. It is widely accepted that TGF-𝛽1 is
the central element of the “core pathway” of organ fibrosis in
most if not in all organs, including the airways [22], kidney
[23], gastrointestinal tract [24], heart [25], and liver [26].
TGF-𝛽 is mainly derived from macrophages and fibroblasts
[27]; however, other immune and nonimmune cells including
dendritic cells [28], Treg [29], CD8+ T [30], or epithelial cells
[31] can also produce it. Binding of TGF-𝛽 to its receptor
complex leads to the phosphorylation of the downstream
signaling mediators small mothers against decapentaplegic
homolog (SMAD)2/3 forming a complex with SMAD4 [32]
that translocates from the cytoplasm into the nucleus and
induces the expression of its target genes. However, TGF-
𝛽 can also promote some noncanonical signaling pathways
including the activation of extracellular signal-regulated
kinase (ERK)/cJun/p38 mitogen activated protein kinases
[33]. In response to the activation of these TGF-𝛽-mediated
signaling pathways MFs differentiate from their precursors
and express 𝛼-SMA [34]. Other growth factors including
platelet-derived growth factor (PDGF), connective tissue
growth factor (CTGF), insulin-like growth factor (IGF),
fibroblast growth factor (FGF), and epidermal growth factor
(EGF) also influence the complexmolecular interplay leading
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Table 1: Inflammatory mediators with pro- and/or antifibrotic
effects [27, 46].

Profibrotic Antifibrotic

Growth factors

TGF-𝛽
PDGF
CTGF
IGF
FGF
EGF
VEGF

HGF

Cytokines

IL-1
IL-4
IL-5
IL-6
IL-13
IL-17
IL-19
IL-20
IL-21
IL-24
IL-33
TNF-𝛼
CCL2
CCL3
CCL4
CCL20

IL-7
IL-10
IL-12
IL-22
IFN-𝛾

TGF: tumor growth factor; PDGF: platelet-derived growth factor; CTGF:
connective tissue growth factor; IGF: insulin-like growth factor; FGF:
fibroblast growth factor; EGF: epidermal growth factor; VEGF: vascular
endothelial growth factor; HGF: hepatocyte growth factor; IL: interleukin;
TNF: tumor necrosis factor; CCL: chemokine (C-C motif) ligand; IFN:
interferon.

to the differentiation and increased ECM production of MFs
[35–37].These growth factors have been also implicated in the
pathomechanism of a number of fibrotic diseases including
lung [38, 39], kidney [40, 41], intestinal [42, 43], heart [44],
and liver fibrosis [45].

Th2-derived cytokines (IL-4, IL-5, IL-6, IL-13, and IL-21)
have distinct role in the regulation of organ fibrosis [4]. One
of the most studied Th2 interleukins is IL-13, which exerts a
strong profibrotic effect in different FDs. In animal models
pulmonary overexpression of IL-13 induced subepithelial air-
way fibrosis [94]; its inhibition with anti-IL-13 antibody sig-
nificantly reduced ECM deposition after bleomycin-induced
lung fibrosis [95]. Previously it has been suggested that the
biological role of IL-13 is partially due to the profibrotic
effects of IL-4 [96], as they share the common IL-4R𝛼/signal
transducer and activator of transcription 6 (STAT6) signaling
pathways [97]. However, recently it has been demonstrated
that IL-13 still explicates its fibrosis-inducing effect when
the canonic IL-4R𝛼/STAT6-mediated signaling pathway is
blocked. Indeed, IL-13 has been demonstrated to activate
an additional signaling mechanism through its own recep-
tor (IL-13R𝛼2) leading to organ fibrosis [98]. Other Th2
cytokines including IL-5 and IL-21 can enhance the profi-
brotic effect of IL-13 by increasing its production and/or
the expression of its receptor [99, 100]. However, IL-21 can

promote tissue fibrosis also by inducing the differentiation of
naive T cells to Th17 cells [27].

Th17 cells produce a variety of different cytokines: among
them IL-17 is the most well-studied one. IL-17 was shown to
contribute to the development of fibrosis in different organs
including the lung [101], kidney [102], intestine [103, 104],
heart [105], and liver [106]. Elevated level of IL-17 was found
in human intestinal strictures andMFs expressed its receptor
IL-17RC during fibrosis associatedwith Crohn’s disease (CD).
Indeed, IL-17 induces the collagen production of subepithe-
lial MFs and the expression of matrix metalloproteinase-3
(MMP-3), MMP-12, and tissue inhibitor of MMPs (TIMP)-
1 in the colon, which have significant effects on the ECM
remodeling and tissue architecture [103, 104]. Pharmacologic
inhibition of the IL-17-induced ERK1/2 or p38 signaling
pathways attenuated the collagen expression ofmouse hepatic
stellate cells [106, 107]. The profibrotic effect of IL-17 was
suggested in relation to skin fibrotic lesions as well. IL-17 gene
knockout (KO) mice had diminished bleomycin-induced
skin fibrosis and IL-17 deficiency attenuated skin thickness in
a mouse model of scleroderma [108].

4. Characteristic of the IL-10 Cytokine Family

In addition to the above described growth factors and
cytokines, recently members of the IL-10 family as a new
group of fibrosis-related inflammatory mediators came into
focus. Cytokines of the IL-10 family exert host defense mech-
anism; they are essential for the maintenance of epithelial
layer integrity and also facilitate tissue healing. IL-10 cytokine
family consists of nine related molecules: IL-10, IL-19, IL-
20, IL-22, IL-24, IL-26, IL-28A, IL-28B, and IL-29 [109].
These cytokines can be classified into three subfamilies with
different biological functions: (1) IL-10 subfamily represented
by IL-10 itself; (2) IL-20 subfamily (IL-19, IL-20, IL-22, IL-
24, and IL-26) which play a role in host defense mechanisms
against bacteria; (3) type III interferons (IFNs): IL-28A, IL-
28B, and IL-29, which induce antiviral responses.

Initially, IL-10 was described as a Th2 cytokine but later
it has been revealed that many other immune cells including
Th1, Th17, Treg, CD8+ T, and B lymphocytes, macrophages,
dendritic, natural killer, and mast cells also express IL-10
[109, 110]. Binding of IL-10 dimers to their tetramer receptor
consisting of two IL-10R𝛼 and two IL-10R𝛽 chains activates
tyrosine kinase 2 and Janus tyrosine kinase 1 (JAK1), which
phosphorylate IL-10R𝛼. Then STAT3 binds to IL-10R𝛼 and
gets phosphorylated by JAK1. Finally phosphorylated STAT3
translocates into the nucleus and binds to the STAT-binding
elements in the promoters of various IL-10 target genes. One
of these IL-10 responsive genes is the suppressor of cytokine
signaling 3 (SOCS3), whose induction was correlated with
decreased expression of TNF-𝛼 and IL-1𝛽. Moreover, IL-
10 can affect the expression of other downstream effectors
including MMP-9, inducible nitric oxide synthase, and IFN-
𝛾 [109, 111]. IL-10 also inhibits the activation of antigen
presenting cells through reducing the expression of major
histocompatibility complex class II. IL-10 has a general
suppressive effect; it inhibits both the innate and adaptive
immune responses, thus preventing increased exacerbations.
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Thereby IL-10 plays a significant role in the prevention of
tissue damage which is a common element of chronic FDs.
Indeed, wound repair results in scar formation in IL-10
KO mice [112] and on the contrary overexpression of IL-
10 modulates inflammatory responses at a wound site of
adults more closely resembling the profile characteristic for
the embryo [113].These observations suggest that by reducing
the inflammatory response IL-10may inhibit the proliferation
and collagen synthesis of the MFs as well [114].

Based on their overlapping target-cell profile and bio-
logical function, IL-19, IL-20, IL-22, IL-24, and IL-26 were
classified into the IL-20 subfamily [115]. Cellular sources of
the members of IL-20 subfamily are immune cells including
monocytes, lymphocytes, natural killer cells, and macro-
phages and also epithelial cells and fibroblasts. Members
of the IL-20 subfamily show significant similarities in the
structure of their receptor heterodimers. While IL-19 binds
to IL-20RA/IL-20RB, IL-20 and IL-24 bind either to IL-
20RA/IL-20RB or to IL-22RA1/IL-20RB heterodimers. IL-22
binds to IL-22RA1/IL-10RB and IL-26 to the IL-20RA/IL-
10RB receptor complex. Expression of the different receptor
heterodimers can vary between tissues, which may explain
the organ-specific effects of themembers of this cytokine sub-
family. IL-10RB is ubiquitously expressed in the haematopoi-
etic system, IL-20RA and IL-20RB are primarily distributed
in the skin, lung, testis, ovary, and placenta, and IL-22RA1was
shown to be present in the kidneys, intestine, liver, pancreas,
and skin [115]. Similar to IL-10, binding of themembers of IL-
20 subfamily to their receptors activates the JAK1/STAT1 and
STAT3 signaling pathways [115]. IL-22 and IL-24 both can act
also through the Akt, ERK, JNK, and p38 signaling pathways
[92, 116].

Finally, the third subgroup of IL-10 family is the subfamily
of type III IFNs (IL-28A, IL-28B, and IL-29) which signal
through the IFN-𝜆 receptor (IFN𝜆R). IFN𝜆R is a heterodimer
consisting of an IL-28R𝛼 and an IL-10R𝛽 subunit and is
present exclusively on the surface of epithelial cells. Ligand
binding to IFN𝜆R induces the activation of JAK/STAT signal-
ing and antiviral activity on epithelial surfaces [117]. Unlike
the other members of the IL-10 family type III IFNs have no
known effect on organ fibrosis.

5. Role of IL-10 Family Members in
Fibrotic Diseases

5.1. Pulmonary Fibrosis. Interstitial lung disease (ILD) is a
heterogenic group of disorders with different etiology. ILD
can be linked to a certain environmental exposure, includ-
ing cigarette smoking, chemotherapy or radiation therapy,
infection, or autoimmune diseases; however, it can also
appear without any known cause. In this case, it is termed
as idiopathic pulmonary fibrosis (IPF) [118]. Most of these
pulmonary disorders are primarily characterized by inflam-
mation of the lung interstitium [119]. However, others such
as IPF are primarily fibrotic and are associated with excessive
deposition of ECM resulting in the disruption of the original
architecture of the lung and loss of its volume. In general,
patients with a known etiology of ILD respond well to the
targeted therapy especially when inflammation dominates;

however, they are difficult to treat when fibrosis comes
into view [119]. Indeed treatment opportunities for IPF are
limited; lung transplantation is the only therapeutic option
available in severe cases.

Recent studies reveal close association between IL-10
family of cytokines and ILDs. Level of IL-10 was significantly
increased in the lung and bronchoalveolar lavage (BAL)
of silica inhaled mice compared to controls. Moreover, IL-
10 KO mice had more increased lung inflammation after
intratracheal instillation of silica than wild type animals [47].
Moreover, genetic delivery of IL-10 significantly attenuates
the TGF-𝛽 production in the lung of mice with bleomycin-
induced pulmonary fibrosis [48]. In humans greater percent-
age of peripheral CD4+ T lymphocytes produced IL-10 and
higher serum levels of IL-10 were found in patients with IPF
than normal subjects [49]. Moreover, the extent of IL-10 pro-
duction correlated with forced vital capacity of the patients
[120]. Similarly, comparing the protein concentration of IL-10
in the bronchoalveolar lavage (BAL) of patients with different
types of ILDs the highest level of IL-10 was demonstrated
in patients with IPF compared with sarcoidosis or hypersen-
sitivity pneumonitis [50–52].

Similar to IL-10 the protective role of IL-22 is suggested
in relation to fibrotic lung disorders. Indeed, it has been
demonstrated that recombinant IL-22 treatment inhibits the
phenoconversion of alveolar epithelial cells into MFs, thus
reducing the number of ECMproducing cells in a bleomycin-
induced mouse model of lung fibrosis [78]. Administration
of an anti-IL-22 neutralizing antibody has also been shown
to enhance pulmonary inflammation and ECM deposition in
the same bleomycin-induced model of lung fibrosis.

Similar results were found in amousemodel of hypersen-
sitive pneumonitis induced by repeated exposure to Bacillus
subtilis leading to lung fibrosis. Namely, inhibition of IL-22
resulted in enhanced collagen deposition in the lung, whereas
treatment with recombinant IL-22 inhibited lung fibrosis
[79]. These beneficial antifibrotic effects of IL-22 suggest its
potential as a novel therapeutic target in the treatment of
pulmonary fibrosis.

To the best of our knowledge there are no studies inves-
tigating the role of IL-19, IL-24, IL-26, IL-28, and IL-29 in
pulmonary fibrosis.

5.2. Renal Fibrosis. The prevalence of CKDs is estimated to
be 8–16% worldwide and their number is rapidly increasing
[121]. Currently, about 20–25 million patients need renal
replacement therapy [122]. The most common etiologies of
CKDs and renal fibrosis are diabetes mellitus (DM) and
hypertension in the adult population [122, 123] and obstruc-
tive nephropathy in childhood [124]. However, CKDs irre-
spectively of their etiology always have an inflammatory com-
ponent, which shows a strong correlation with the progres-
sion of fibrosis and the decline of renal function [125–127].

Recently, the connection between IL-10 and renal fibrosis
has been suggested. Jin et al. demonstrated that after the
onset of unilateral ureteral obstruction (UUO) more severe
inflammation and fibrosis develop in the kidney of mice
lacking IL-10 than in wild type controls. Following UUO
they found increased infiltration of inflammatory cells and
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upregulation of inflammatory chemokines and cytokines
including monocyte chemoattractant protein-1, RANTES,
tumor necrosis factor- (TNF-) 𝛼, IL-6, IL-8, or macrophage
colony-stimulating factor in the kidney of IL-10 knockout
(KO) mice. In line with increased inflammation in the mice
lacking IL-10 they found a more pronounced collagen I
deposition and increased expression of fibronectin, 𝛼-SMA,
fibroblast-specific protein-1, vimentin, and MMP-2 support-
ing the development of renal fibrosis [53]. In accordance with
the observation of Jin et al., Rodell et al. demonstrated that
local immunotherapy with IL-10 in hyaluronic acid hydrogels
reduces macrophage infiltration, the number of apoptotic
cells, and the size of the fibrotic area as well, confirming
the potential use of IL-10 containing hydrogels in the local
treatment of CKD [54, 55].

The participation of other members of the IL-10 family
like IL-19 or IL-20 in the pathomechanism of renal fibrosis
is less unequivocal. Elevated urinary level of IL-19 [70] and
IL-20 [74] was observed in patients with CKD. In vitro treat-
ment of human renal proximal tubular epithelial cells with
nephrotoxic agents, including Adefovir, Dipivoxil, Cisplatin,
or Ifosfamide, was shown to induce the expression of IL-19
[70]. Similarly, HgCl

2
treatment of HK-2 human proximal

tubular epithelial cell line resulted in increased presence of IL-
20 and its receptors [75]. Moreover, administration of either
IL-19 [71] or IL-20 [75] induced the apoptosis of renal tubular
epithelial cells in vitro.

A recent study demonstrated that following renal
ischaemia-reperfusion (I/R) injury the serum level of IL-22
and also the expression of its receptor, IL-22R1, in the renal
proximal tubular epithelial cells are increased [80]. Treatment
of the animals with recombinant IL-22 or the overexpression
of IL-22 decreased the I/R-induced tubulointerstitial injury
in the cortex and outer medulla and also the serum urea and
creatinine levels compared to saline-treated control animals.
The underlying mechanism of the beneficial effects of IL-22
is its overall antiapoptotic effect. Indeed overexpression of
IL-22 upregulated the renal expression of B-cell lymphoma-2
(Bcl-2) and downregulated that of Bcl-2-associated death
promoter in mice subjected to I/R injury [80]. However,
hypoxia is a known inducer of organ fibrosis; to the best
of our knowledge, there is no data in the literature directly
supporting the role of IL-22 in the pathomechanism of renal
fibrosis. The involvement of other members of the IL-10
cytokine family like IL-24, IL-26, IL-28, and IL-29 in renal
fibrosis is completely unknown.

5.3. Intestinal Fibrosis. Intestinal fibrosis is a serious com-
plication of IBD in both adults and children [128–131] and
more than 60% of patients with IBD require one or more
operations over their lifetime, commonly because of stricture
formation [128, 132]. However anti-inflammatory therapies
reduce the symptomsof IBD, the recently available treatments
of intestinal fibrosis are insufficient, and new therapeutic
approaches are needed.

Similar to other chronic diseases experimental and clini-
cal studies suggest the involvement of the members of IL-10
family in intestinal fibrosis. The first study reporting elevated
level of IL-10 in the serumof patients with both active CD and

ulcerative colitis (UC) was published in 1995. Also increased
expression of IL-10 was found in the mucosa of patients with
UC in remission [56]. Later studies, however, do not confirm
these results unequivocally. Indeed normal levels of IL-10
in patients with IBD [57, 58] and lower expression of its
receptors IL-10R1 and IL-10R2 in patientswith remissionwere
also revealed [76]. Moreover, loss of function mutations in
the gene of IL-10 or its receptor causes early onset of IBD
with refractory colitis and perianal disease [59]. In line with
these findings decreased production of IL-10 was observed in
whole blood cell cultures of patients with severe phenotypes,
compared with nonpenetrating, nonstricturing CD patients.
Similarly, DCs isolated frompatients suffering frompenetrat-
ing CD produced less IL-10 in response to lipopolysaccharide
(LPS) stimulation compared to patients without complica-
tions [133]. These observations suggest that defects in the
production of the anti-inflammatory IL-10 may represent a
mechanismmediating the more severe manifestations of CD.
Despite the apparent discrepancy in the literature regarding
the expression of IL-10 in patients with IBD, the treatment
with IL-10 or IL-10-inducing agents could be of particular
benefit, because IL-10 itself can suppress proinflammatory
responses with a consequential limitation of tissue damage
and may exert antifibrotic effects as well. Recently clinical
trials are in progress investigating the effect of the supplemen-
tation of IL-10 in IBD (see more details later in the therapy
section of this review) [60, 61].

Similar to IL-10, the protective role of IL-19 was also sug-
gested in IBD. Indeed, IL-19 KO mice were more susceptible
to DSS-induced experimental colitis than the wild type ani-
mals. The lack of IL-19 in the IL-19 KO mice correlated with
the accumulation of macrophages. Moreover, macrophages
derived from IL-19 KO mice produced significantly higher
level of inflammatory cytokines including IL-6, TNF-𝛼, and
IL-12 following LPS stimulation compared to macrophages
of wild type animals [73]. In humans decreased production
of IL-19 was observed in the monocytes and peripheral
bloodmononuclear cells (PBMCs) of patients with active CD
compared to those from healthy controls. Moreover, admin-
istration of recombinant IL-19 significantly decreased the
production of TNF-𝛼 in LPS-treated monocytes and PBMCs
of healthy controls but not in those of the patients with
active CD [72].

Previous studies demonstrated that production of IL-20
can be induced by LPS, TNF-𝛼, and other proinflammatory
cytokines [76, 115]. The number of epithelial and inflamma-
tory cells expressing IL-20 and IL-20RB was increased in the
mucosa of patients with active UC, but level of IL-20 was
decreased in the colonicmucosa of patientswithUC in remis-
sion comparedwith patientswith activeUCand controls [76].

Elevated serum and mucosal level of IL-22 was demon-
strated in patients with active CD that correlated with disease
severity [81, 131, 134, 135]. IL-22 is a direct downstream
effector cytokine of IL-23, whose receptor was identified by
the Genome Wide Association Study as an IBD-related gene
[136]. Elevated level of IL-23 was found in patients with
active IBD [137] and blocking of IL-23 was effective in both
prevention and treatment of active colitis [138], suggesting
the potential of the IL-23-IL-22 pathway as a target of further
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therapeutic interventions. Contrary to these findings in
human IBD, studies onmouse models of colitis suggested the
protective role of IL-22 in the intestine. Inhibition of IL-22 by
neutralizing antibodies in wild type mice or the lack of IL-22
in KO mice with dextran-sodium-sulphate- (DSS-) induced
colitis resulted in an increased inflammation and epithelial
damage of the colon leading to more severe weight loss of the
animals [82, 83].

Moreover, rIL-22 treatment of colonic epithelial cells iso-
lated from mice with DSS-induced colitis induced activation
of STAT3 signaling pathway that regulates gut homeostasis
and was shown to promote wound healing in an IL-22-
dependent manner [82].

The expression of IL-24 was shown to be significantly
elevated in the mucosa of patients with active CD and UC
compared to that of inactive IBD or controls, but the number
of IL-24-producing peripheral B, CD4+ T, CD8+ T cells
and monocytes was increased only in patients with active
CD but not in UC patients or controls [91]. Andoh et al.
investigating the effect of IL-24 treatment on the behaviour
of HT-29 colonic epithelial cells found that IL-24 activates
the JAK1/STAT3 and also the SOCS3 signaling pathway and
leads to increased expression of membrane-bound mucin-1,
mucin-3, and mucin-4 supporting its suppressive effects on
mucosal inflammation in IBD [92].

Level of IL-26was also elevated in the serumand inflamed
region of the colonic mucosa of patients with CD and it
was expressed by infiltrating immune cells mainly by Th1
and Th17 but not epithelial cells [93]. IL-26 can promote the
expression of proinflammatory cytokines through the activa-
tion of STAT1/3, ERK1/2, JNK, and Akt signaling pathways
suggesting its proinflammatory role in IBD [139].

To the best of our knowledge there are no data about
the direct role of IL-10 family in the pathomechanism of
intestinal fibrosis; however, the above-mentioned data sug-
gest their relevance in aberrant intestinal tissue remodeling.
The involvement of IL-28A and IL28-B and IL-29 in IBD is
still completely unknown.

5.4. Cardiac Fibrosis. Cardiac fibrosis is a common feature
of different pathological conditions including myocardial
infarction, pressure overload, hypertrophic cardiomyopathy,
viral infections, toxic insults, or metabolic disturbances [63,
140, 141]. Recently a series of animal studies suggested the
protective effect of IL-10 in cardiac fibrosis. An in vivo
experiment using IL-10 KO and wild type mice suggested
that lack of IL-10 results in adverse tissue remodeling and
more severe myocardial fibrosis in an isoproterenol-induced
pressure overload-derived heart failure model. On the other
hand, administration of recombinant IL-10 improved cardiac
remodeling and inhibited scar tissue formation and reduced
the mortality of mice [62, 63].

The further in vivo studies confirmed the role of IL-10 in
tissue scaring using other animalmodels as well. In ischemia-
inducedmousemodel of heart fibrosis impairedmobilization
of bone marrow-derived endothelial progenitor cells, which
are crucial in neovascularization and tissue repair, was
observed in the heart of IL-10 KOmice compared to wild type

controls. Moreover, IL-10 treatment of the mice enhanced
the survival of the endothelial progenitor cells leading to
better myocardial recovery [142]. Similarly, IL-10 treatment
of the mice suffering from autoimmune myocarditis resulted
in a significant decrease of myocardial inflammation and
fibrosis. Furthermore, the administration of IL-10 prevented
the relapse of the left ventricular function and increased the
ejection fraction [65].

The development of chronic cardiomyopathy in the
experimentalTrypanosoma cruzi-infected dogmodel of Cha-
gas disease was strongly correlated with the production of
IL-10. Indeed low level of IL-10 and simultaneously high
expression of IFN-𝛾 and TNF-𝛼 were observed in the acute
cardiac infection phase, which correlated with the severity of
heart inflammation and fibrosis in the chronic phase [64].

However, our knowledge is limited, and elevated level of
IL-22 was demonstrated in the heart of mice with dilated
cardiomyopathy and cardiac fibrosis. Treatment of mice
with IL-22-specific antibody decreased the survival rate of
the animals and exacerbated myocardial fibrosis suggesting
the cardioprotective role of IL-22 through the inhibition of
myocardial fibrosis [84].

The role of other members of the IL-10 family including
IL-19, IL-20, IL-24, IL-26, IL-28, and IL-29 in cardiac fibrosis
is completely unknown.

5.5. Liver Fibrosis. Liver fibrosis is one of the major causes of
morbidity and mortality worldwide with around 1.5 million
deaths per year [143]; however, the exact pathomechanism
is just partially understood. The main causes of liver fibrosis
include fatty liver, alcohol abuse, biliary track disease, chronic
viral infection, autoimmune disease, and toxicant exposure
[144].

The most studied members of the IL-10 family related to
liver fibrosis are IL-10, IL-20, and IL-22. Studies investigated
the involvement of these cytokines mainly in alcoholic
hepatitis, nonalcoholic and infection associated liver fibrosis
[145].

In the liver IL-10 can be produced by a variety of cell types
including hepatocytes, Kupffer cells, sinusoidal endothelial
cells, hepatic stellate cells, and lymphocytes and also its
receptor is expressed by progenitor and hepatic stellate cells,
the predominant cell types involved in liver fibrogenesis [66,
85].

Higher hepatic TNF-𝛼 levels and more severe liver fibro-
sis can be observed in the carbon tetrachloride (CCl

4
) treated

IL-10 KO mice than in the wild type animals [67, 68].
On the contrary, IL-10 gene therapy reduced the expres-

sion of profibrotic genes, including TGF-𝛽 and TNF-𝛼,
and reversed the thioacetamide-induced hepatic fibrosis in
mice [69]. Recent studies demonstrated that IL-10 plays a
protective role in alcoholic liver disease as well [146].

Similar to IL-10, elevated level of IL-20 was found in
hepatocytes and hepatic stellate cells of patients suffering
from liver fibrosis. However, contrary to the effect of IL-10,
recombinant IL-20 treatment of mice enhanced the expres-
sion of the profibrotic cytokines including TGF-𝛽 and TNF-𝛼
and promoted the collagen synthesis of the liver. Treatment
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Fibrosis

Myofibroblast
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PDGF

IGF-1

CTGF

AngII

Endothelin

AT1R
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Pirfenidone, ALK5 inhibitors

Imatinib, dasatinib, nilotinib
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Recombinant human IL-10 (tenovil)

IL-22 Neutralizing antibody

IL-10

IL-20IL-20R1 Neutralizing antibody

TGF-𝛽

Figure 2: Potential therapeutic targets of fibrosis. ACEI: angiotensin-converting enzyme inhibitors; ALK5: activin-linked kinase 5; Ang II:
angiotensin II; ATR: angiotensin receptor; CTGF: connective tissue growth factor; ET1: endothelin receptor isoform 1; IGF-1: insulin-like
growth factor-1; IL: interleukin; PDGF: platelet-derived growth factor; TGF-𝛽: transforming growth factor-𝛽.

with neutralizing antibody against IL-20 or IL20RA dimin-
ishes the CCl

4
-induced liver fibrosis in mice. Also IL-20 KO

mice are less sensitive against CCl
4
-induced liver fibrosis [77].

A variety of studies reveal the relevance of IL-22 in liver
fibrosis demonstrating its protective role. In a chronic-binge
ethanol feeding mouse model of alcohol induced liver injury
the recombinant IL-22 treatment of the animals ameliorated
liver injury and alcoholic fatty liver through the activation
of STAT3 signaling pathway [85, 86]. In the same murine
model of hepatic fibrosis administration of IL-22 upregulated
the expression of several antiapoptotic and antioxidant genes
contributing to the attenuation of the oxidative stress [86].
Long-term administration of recombinant IL-22 tomice with
a high fat diet induced hepatic steatosis and diminished the
TNF-𝛼 level of the liver [87].

Overexpression of IL-22 or recombinant IL-22 treatment
decreased the expression of alpha-smooth muscle actin
(𝛼SMA) in cultured hepatic stellate cells and also in the
fibrotic liver of the mice with CCl

4
-induced liver fibrosis. In

addition, IL-22 promoted the senescence of hepatic stellate
cells through the SOCS3 bound p53 and p21 signaling
pathways, thereby ameliorating liver fibrosis [88].

On the contrary, inhibition of IL-22 with a neutralizing
antibody reduced the activation of STAT3 and led to thewors-
ening of liver injury in a T cell-mediated hepatitis induced by
concanavalin A [89].

In humans, elevated level of IL-22 was found in the serum
and liver tissue of human patients with HCV-induced and
alcoholic liver fibrosis. Based on the results of Wu et al. profi-
brotic effects of IL-22 were proposed in humans in contrast
with its antifibrotic role in mice suggesting that IL-22 may
have diverse functions in different species and disease states
[90].

The role of other members of the IL-10 family including
IL-19, IL-24, IL-26, IL-28, and IL-29 needs to be elucidated in
liver fibrosis.

6. Therapeutic Targets of Tissue Remodeling

Chronic FDs affect hundreds of millions of people and are
the leading cause of morbidity and mortality in the Western
world. Despite the urgent medical need there is no generally
accepted strategy to treat or hinder organ fibrosis. However,
due to the efforts during the last few years there was a
remarkable achievement in the treatment of organ fibrosis.
The drugs which are currently under development target the
key participants of the “fibrosis pathway” including TGF-𝛽,
PDGF, IGF, CTGF, angiotensin II, or endothelin-1 (Figure 2).

Among them, pirfenidone, targeting the TGF-𝛽 pathway,
was recently approved by the U.S. Food and Drug Adminis-
tration (FDA) for the treatment of IPF. In phase III clinical
trial pirfenidone successfully reduced the progression of IPF
and was associated with fewer deaths [147]. However, TGF-𝛽
and other key factors of organ fibrosis play also a crucial role
in other significant biological processes, like embryogenesis
[148], regulation of immune responses [149], or cancer devel-
opment [150]. Therefore, cautions must be taken in case of
organ fibrosis, which is often related to chronic diseases when
the antifibrotic treatment needs to be maintained for years.
Therefore, besides the inhibition of the above-mentioned
determinative pathways it seems to be preferable to alter new,
more fibrosis-specific or endogenously antifibrotic pathways
leading to fewer serious side effects and allowing life-long
treatment of the patients.

Recently, the members of the IL-10 family came into
focus as possible new target molecules, which may alter the
progression of organ fibrosis (Table 2). Different therapeutic
strategies were developed to influence the effects of IL-10, IL-
20, IL-22, or IL-20RA. Among them, investigations aiming
at the alteration of the IL-10 mediated pathways are in the
most advanced stage. Indeed, after the successful preclinical
experiments, clinical studies using human recombinant IL-
10 (rhuIL-10) are already in progress for the treatment of
IBD. A double-blind clinical trial enrolling patients with CD
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after intestinal resection demonstrated that administration of
rhuIL-10 for 12 consecutive weeks was safe and well tolerated
[61]. Another double-blind placebo controlled trial with 95
active CD patients who received rhuIL-10 (sc.; 1, 5, 10, or
20𝜇g/kg/day) for 29 days showed that 5 𝜇g/kg/day rhuIL-
10 treatment can induce clinical remission and endoscopic
improvement in 23.5% of the patients compared to placebo-
treated group where no remission was detectable. At the 20-
week follow-up period the relapses requiring further thera-
peutic intervention were decreased by 15% in CD patients
who were treated with 5 𝜇g/kg rhuIL-10 compared to controls
treated with placebo only [151]. However, interestingly the
higher than 5 𝜇g/kg/day doses of rhuIL-10 treatment were less
effective [152]. CD patients treated with high doses (10 or
20𝜇g/kg/day) of rhuIL-10 had increased production of IFN-
𝛾 in whole blood cells and elevated serum neopterin levels,
which may be responsible for the effectiveness of higher
rhuIL-10 doses in CD. Moreover, high doses of rhuIL-10
caused headache, fever, and anaemia [152].

Schreiber et al. examined 329 patients with therapy
refractory CD and observed a clinical improvement in 46%
of patients treated with 8 𝜇g/kg/day rhuIL-10 compared with
the 27%of placebo-treated control patients; however, they did
not find any significant differences in the clinical remission
between rhuIL-10 (1, 4, 8, and 20𝜇g/kg) and placebo-treated
groups [153]. Marlow et al. suggested that IL-10 can be rather
effective in the prevention of IBD; however, there are several
individual differences between the exact etiologies of the dis-
ease. Moreover, IL-10 may exert also an immunostimulatory
effect, which may compensate its immunosuppressive quali-
ties [60].

Local treatmentwith IL-10-secretingLactococcus lactis (L.
lactis) prevented the development of colitis in IL-10 KOmice
and reduced inflammation in the DSS-induced mouse model
of colitis without systemic side effects [154]. In a human phase
I trial ten CD patients were treated with a hIL-10 sequence
containing L. lactis twice a day for one week. The treatment
was safe and reduced the disease activity without any side
effects observed in the case of high systemic doses [155]. Simi-
lar to L. lactis treatment, replication-deficient adenoviral vec-
tors directly delivered to gastrointestinal epithelial cells were
also effective in murines through the improvement of local
IL-10 release [156, 157].

The above-mentioned data suggest that systemic admin-
istration of rhuIL-10 may be a safe and well-tolerated treat-
ment contributing to the clinical improvement of CD and the
local IL-10 therapy may have even more potential because of
having fewer side effects. However, the direct effect of rhuIL-
10 on intestinal fibrosis that often appears in IBDhadnot been
studied in humans.

To the best of our knowledge, recently there are no human
studies investigating the effect of recombinant IL-10 and other
family members on lung fibrosis. In rats, inhaled IL-10 was
shown to attenuate LPS-induced pulmonary and systemic
inflammation through the reduction of proinflammatory
mediators including TNF-𝛼, IL-1𝛽, IL-6, and IFN-𝛾 in the
BAL and plasma [158]. Moreover, after bilateral femoral
fracture that induces systemic inflammation and impairs

the lung function, inhalative administration of 50𝜇g/kg/day
recombinant mouse IL-10 decreased the pulmonary infil-
tration of neutrophils and reduced the expression of the
adhesion molecule ICAM-1 but had no significant effects on
the systemic inflammatory response [159].

In a double-blind, placebo-controlled study the effect
of rhuIL-10 was investigated in human patients with renal
transplantation who received OKT3, a monoclonal murine
antibody targeting the epsilon chain of the CD3-T cell
receptor complex that efficiently reverses graft rejection,
as induction therapy. Wissing et al. found that pretreat-
ment with doses of up to 1 𝜇g/kg rhuIL-10 was safe and
significantly reduced the OKT3-induced release of TNF-𝛼
[160]. Moreover, short-term treatment of nephritic rats with
intravenous (iv) rhuIL-10 was effective in the inhibition of
matrix deposition and reduced the protein level of 𝛼-SMA
in antithymocyte 1 induced glomerulosclerosis but had no
beneficial effects on proteinuria [161].

In a mouse model of myocardial infarction subcutan
(sc) administration of recombinant IL-10 suppressed the
expression of proinflammatory cytokines in themyocardium,
reduced infarct size, attenuated infarct wall thinning,
improved left ventricular functions, reduced the activity of
MMP-9, and diminished fibrosis [63].

In a randomized, double-blind trial twenty-four patients
with chronic hepatitis C were sc. treated with either 4 or
8 𝜇g/kg rhuIL-10 per day for 90 days.The therapywas safe and
well tolerated, and administration of rhuIL-10 normalized the
serum levels of alanine aminotransferase (ALT), improved
liver histology, and reduced liver fibrosis [162]. Long-term
(12-month) rhuIL-10 sc. treatment of thirty patients with
chronic hepatitis C-induced advanced fibrosis, who had
failed antiviral therapy, resulted in a significant improve-
ment of their serum ALT, decreased hepatic inflammation,
and fibrosis. However, long-term administration of rhuIL-10
altered the cytokine profile of PBMCs promoting aTh2 dom-
inance and decreased the number of HCV-specific CD4+ and
CD8+ T cells resulting in enhanced HCV viral burden due
to the alterations in the host’s immunologic viral surveillance
[163].

Moreover, in preclinical experiments the effect of treat-
ment with recombinant IL-22 [88], anti-IL-20, or anti-IL-
20RAmonoclonal antibody [77] was demonstrated to inhibit
TGF-𝛽 production or the excessive accumulation of ECM
components in mouse models of liver fibrosis induced by
chemical agents (CCl

4
) or mechanical bile duct ligation.

However, results about the possible use of rhuIL-10 as an
antifibrotic drug are promising and further preclinical and
clinical studies are needed to elucidate the precise role of the
IL-10 family in fibrosis and to estimate their potential thera-
peutic effectiveness.
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