12 research outputs found

    Polygons vs. clumps of discs: a numerical study of the influence of grain shape on the mechanical behaviour of granular materials

    Full text link
    We performed a series of numerical vertical compression tests on assemblies of 2D granular material using a Discrete Element code and studied the results with regard to the grain shape. The samples consist of 5,000 grains made from either 3 overlapping discs (clumps - grains with concavities) or six-edged polygons (convex grains). These two grain type have similar external envelopes, which is a function of a geometrical parameter α\alpha. In this paper, the numerical procedure applied is briefly presented followed by the description of the granular model used. Observations and mechanical analysis of dense and loose granular assemblies under isotropic loading are made. The mechanical response of our numerical granular samples is studied in the framework of the classical vertical compression test with constant lateral stress (biaxial test). The comparison of macroscopic responses of dense and loose samples with various grain shapes shows that when α\alpha is considered a concavity parameter, it is therefore a relevant variable for increasing mechanical performances of dense samples. When α\alpha is considered an envelope deviation from perfect sphericity, it can control mechanical performances for large strains. Finally, we present some remarks concerning the kinematics of the deformed samples: while some polygon samples subjected to a vertical compression present large damage zones (any polygon shape), dense samples made of clumps always exhibit thin reflecting shear bands. This paper was written as part of a CEGEO research project www.granuloscience.comComment: This version of the paper doesn't include figures. Visit the journal web site to download the final version of the paper with the figure

    Particle shape dependence in 2D granular media

    Get PDF
    Particle shape is a key to the space-filling and strength properties of granular matter. We consider a shape parameter η\eta describing the degree of distortion from a perfectly spherical shape. Encompassing most specific shape characteristics such as elongation, angularity and nonconvexity, η\eta is a low-order but generic parameter that we used in a numerical benchmark test for a systematic investigation of shape-dependence in sheared granular packings composed of particles of different shapes. We find that the shear strength is an increasing function of η\eta with nearly the same trend for all shapes, the differences appearing thus to be of second order compared to η\eta. We also observe a nontrivial behavior of packing fraction which, for all our simulated shapes, increases with η\eta from the random close packing fraction for disks, reaches a peak considerably higher than that for disks, and subsequently declines as η\eta is further increased. These findings suggest that a low-order description of particle shape accounts for the principal trends of packing fraction and shear strength. Hence, the effect of second-order shape parameters may be investigated by considering different shapes at the same level of η\eta.Comment: 5 pages, 8 figure

    Sarcoidose pulmonar: achados na tomografia computadorizada de alta resolução Pulmonary sarcoidosis: high-resolution computed tomography findings

    No full text
    A sarcoidose é uma doença sistêmica de causa indeterminada, caracterizada por granulomas não-caseosos. Embora possa afetar qualquer órgão, esta doença tem sua morbi-mortalidade relacionada principalmente ao acometimento pulmonar, presente em 80% a 90% dos pacientes. Este artigo ilustra as principais manifestações pulmonares da sarcoidose na tomografia computadorizada de alta resolução, incluindo as formas típicas e atípicas.<br>Sarcoidosis is a systemic disease of unknown etiology, characterized by noncaseating granulomas. Although it may affect any organ, morbidity and mortality are most commonly related to pulmonary involvement, which is found in 80-90% of patients. This study illustrates the principal manifestations of sarcoidosis seen in high-resolution computed tomography scans, including typical as well as atypical forms
    corecore