21 research outputs found

    From pre-attentive processes to durable representation : An ERP index of visual distraction

    Get PDF
    Visual search and oddball paradigms were combined to investigate memory for to-be-ignored color changes in a group of 12 healthy participants. The onset of unexpected color change of an irrelevant stimulus evoked two reliable ERP effects: a component of the event-related potential (ERP), similar to the visual mismatch negativity response (vMMN), with a latency of 120-160 ms and a posterior distribution over the left hemisphere and Late Fronto-Central Negativity (LFCN) with a latency of 320-400 ms, apparent at fronto-central electrodes and some posterior sites. Color change of that irrelevant stimulus also slowed identification of a visual target, indicating distraction. The amplitude of this color-change vMMN, but not LFCN, indexed this distraction effect. That is, electrophysiological and behavioral measures were correlated. The interval between visual scenes approximated 1 s (611-1629 ms), indicating that the brain's sensory memory for the color of the preceding visual scenes must persist for at least 600 ms. Therefore, in the case of the neural code for color, durable memory representations are formed in an obligatory manner. (C) 2014 Elsevier B.V. All rights reserved.Peer reviewe

    Neural gain control measured through cortical gamma oscillations is associated with sensory sensitivity

    Get PDF
    Gamma oscillations facilitate information processing by shaping the excitatory input/output of neuronal populations. Recent studies in humans and nonhuman primates have shown that strong excitatory drive to the visual cortex leads to suppression of induced gamma oscillations, which may reflect inhibitory-based gain control of network excitation. The efficiency of the gain control measured through gamma oscillations may in turn affect sensory sensitivity in everyday life. To test this prediction, we assessed the link between self-reported sensitivity and changes in magneto-encephalographic gamma oscillations as a function of motion velocity of high-contrast visual gratings. The induced gamma oscillations increased in frequency and decreased in power with increasing stimulation intensity. As expected, weaker suppression of the gamma response correlated with sensory hypersensitivity. Robustness of this result was confirmed by its replication in the two samples: neurotypical subjects and people with autism, who had generally elevated sensory sensitivity. We conclude that intensity-related suppression of gamma response is a promising biomarker of homeostatic control of the excitation-inhibition balance in the visual cortex

    Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex

    Get PDF
    Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non-invasive measure of inhibitory-based gain control in the healthy and diseased brain

    Genetic Determinants of Time Perception Mediated by the Serotonergic System

    Get PDF
    Background: The present study investigates neurobiological underpinnings of individual differences in time perception. Methodology: Forty-four right-handed Russian Caucasian males (18–35 years old) participated in the experiment. The polymorphism of the genes related to the activity of serotonin (5-HT) and dopamine (DA)-systems (such as 5-HTT, 5HT2a, MAOA, DAT, DRD2, COMT) was determined upon the basis of DNA analysis according to a standard procedure. Time perception in the supra-second range (mean duration 4.8 s) was studied, using the duration discrimination task and parametric fitting of psychometric functions, resulting in individual determination of the point of subjective equality (PSE). Assuming the ‘dual klepsydra model ’ of internal duration representation, the PSE values were transformed into equivalent values of the parameter k (kappa), which is a measure of the ‘loss rate ’ of the duration representation. An association between time representation parameters (PSE and k, respectively) and 5-HT-related genes was found, but not with DArelated genes. Higher ‘loss rate ’ (k) of the cumulative duration representation were found for the carriers of genotypes characterized by higher 5-HT transmission, i.e., 1) lower 5-HT reuptake, known for the 5-HTTLPR SS polymorphism compared with LL, 2) lower 5-HT degradation, described for the ‘low expression ’ variant of MAOA VNTR gene compared with ‘high expression ’ variant, and 3) higher 5-HT2a receptor density, proposed for the TT polymorphism of 5-HT2a T102C gene compared with CC

    Event-related potential (ERP) correlates of face processing in verbal children with autism spectrum disorders (ASD) and their first-degree relatives: a family study

    No full text
    Abstract Background Inherited abnormalities of perception, recognition, and attention to faces have been implicated in the etiology of autism spectrum disorders (ASD) including abnormal components of event-related brain potentials (ERP) elicited by faces. Methods We examined familial aggregation of face processing ERP abnormalities previously implicated in ASD in 49 verbal individuals with ASD, 36 unaffected siblings (US), 18 unaffected fathers (UF), and 53 unrelated controls (UC). The ASD, US, and UC groups ranged in age from 12 to 21 years, the UF group ranged in age from 30 to 56 years. ERP responses to images of upright and inverted faces and houses were analyzed under disparate EEG reference schemes. Results Face-sensitive features of N170 and P1 were readily observed in all groups. Differences between ASD and control groups depended upon the EEG reference scheme. Notably, the superiority of face over object for N170 latency was attenuated in ASD subjects, but not their relatives; this occurred exclusively with the average reference. The difference in N170 amplitude between inverted and upright faces was reduced in both ASD and US groups relative to UC, but this effect was significant only with the vertex reference. Furthermore, similar group differences were observed for both inverted faces and inverted houses, suggesting a lack of face specificity for the attenuation of the N170 inversion effect in ASD. Conclusion The present findings refine understanding of face processing ERPs in ASD. These data provide only modest evidence for highly-selective ASD-sensitive ERP features, and underscore the sensitivity of these biomarkers to ERP reference scheme. These schemes have varied across published studies and must be accounted for in future studies of the relationship between these commonly acquired ERP characteristics, genotype, and ASD

    Updating the Open Innovation Concept Based on Ecosystem Approach: Regional Aspects

    No full text
    The intensification of innovation processes in Russia is a challenging task that requires a continuous search for solutions to make possible the many required changes in economics. We consider the major factors needed to advance an innovative activity at all levels in the national economy to have a freely exchanged flow of innovative ideas between all actors involved. As practice shows, the currently existing models in the country to deal with open innovations are mostly based on a cluster development approach, which is still limited. The authors propose synergizing the cluster approach with an ecosystem innovation model, which should ensure an effective collaboration and an accelerated rate for the diffusion of innovations between various actors while involving various regions. The purpose of the study was to develop a conceptual model for implementing open proposals from participants in the innovation economy. The research methodology is based on numerous works in the field of open innovation theory, cluster and ecosystem approaches. The study utilizes empirical and dialectical methods of scientific knowledge. The methodological toolkit covers information processing with historical analysis, a literature review using the Russian Citation Index and Scopus databases, analysis and diagnostics of innovative activity in domestic regions, the comparison method, modeling and correlation analysis. We concluded that the interaction of participants in the Russian regions through implementing the cluster model is not sufficiently effective and requires the development of new methodological approaches. Therefore, we propose combining the cluster approach with the ecosystem innovation model, which should ensure an effective cooperation and accelerate the rate of innovation dissemination among various subjects involving several regions. To determine the approach’s efficiency, the proposed concept should be tested in one or more regions
    corecore