131 research outputs found

    Encephalomeningocele cases over 10 years in Thailand: a case series

    Get PDF
    BACKGROUND: Encephalomeningocele, especially in the frontoethmoidal region, is a form of neural tube defect which affects patients in Southeast Asia more commonly than in Western countries. Its underlying cause is not known but teratogenic environmental agents are suspected. However, nutritional deficiency, as in spina bifida, cannot be excluded. METHODS: This study reports 21 cases of meningocele (without brain tissue in the lesion) and encephalomeningocele (with brain tissue) that were admitted to our hospital for surgical corrections in the period of ten years, from 1990 to 1999. Clinicopathological findings, as well as occupations of family members and prenatal exposures to infectious agents or chemicals were reviewed and analyzed. RESULTS: The most commonly involved area was the frontoethmoidal region, found in 20 cases. The combined pattern between nasoethmoidal and nasoorbital defects was found most frequently (11 from 21 cases) and had more associated abnormalities. Encephalomeningocele had more related abnormalities than meningocele with proportions of 0.6 and 0.3, respectively. CONCLUSIONS: Here, we confirmed that genetic defects are not likely to be the single primary cause of this malformation. However, we could not draw any conclusions on etiologic agents. We suggest that case control studies and further investigation on the role of nutritional deficiencies, especially folic acid, in the pathogenesis of encephalomeningocele are necessary to clarify the underlying mechanisms

    Secondary headaches: secondary or still primary?

    Get PDF
    The second edition of the International Classification of Headache Disorders makes a distinction between primary and secondary headaches. The diagnosis of a secondary headache is made if the underlying disease is thought to cause headache or if a close temporal relationship is present together with the occurrence of the headache. At first glance, this may allow clearly secondary headaches to be distinguished from primary headaches. However, by reviewing the available literature concerning several selected secondary headaches, we will discuss the hypothesis that some secondary headaches can also be understood as a variation of primary headaches in the sense that the underlying cause (e.g. infusion of glyceryl trinitrate [ICHD-II 8.1.1], epilepsy [7.6.2], brain tumours [7.4], craniotomy [5.7], etc.) triggers the same neurophysiologic mechanisms that are responsible for the pain in primary headache attacks

    CHInese medicine NeuroAiD efficacy on stroke recovery - Extension study (CHIMES-E): A multicenter study of long-term efficacy

    Get PDF
    © 2015 S. Karger AG, Basel. Background: The CHInese Medicine NeuroAiD Efficacy on Stroke recovery (CHIMES) study was an international randomized double-blind placebo-controlled trial of MLC601 (NeuroAiD) in subjects with cerebral infarction of intermediate severity within 72 h. CHIMES-E (Extension) aimed at evaluating the effects of the initial 3-month treatment with MLC601 on long-term outcome for up to 2 years. Methods: All subjects randomized in CHIMES were eligible for CHIMES-E. Inclusion criteria for CHIMES were age ≥18, baseline National Institute of Health Stroke Scale of 6-14, and pre-stroke modified Rankin Scale (mRS) ≤1. Initial CHIMES treatment allocation blinding was maintained, although no further study treatment was provided in CHIMES-E. Subjects received standard care and rehabilitation as prescribed by the treating physician. mRS, Barthel Index (BI), and occurrence of medical events were ascertained at months 6, 12, 18, and 24. The primary outcome was mRS at 24 months. Secondary outcomes were mRS and BI at other time points. Results: CHIMES-E included 880 subjects (mean age 61.8 ± 11.3; 36% women). Adjusted OR for mRS ordinal analysis was 1.08 (95% CI 0.85-1.37, p = 0.543) and mRS dichotomy ≤1 was 1.29 (95% CI 0.96-1.74, p = 0.093) at 24 months. However, the treatment effect was significantly in favor of MLC601 for mRS dichotomy ≤1 at 6 months (OR 1.49, 95% CI 1.11-2.01, p = 0.008), 12 months (OR 1.41, 95% CI 1.05-1.90, p = 0.023), and 18 months (OR 1.36, 95% CI 1.01-1.83, p = 0.045), and for BI dichotomy ≥95 at 6 months (OR 1.55, 95% CI 1.14-2.10, p = 0.005) but not at other time points. Subgroup analyses showed no treatment heterogeneity. Rates of death and occurrence of vascular and other medical events were similar between groups. Conclusions: While the benefits of a 3-month treatment with MLC601 did not reach statistical significance for the primary endpoint at 2 years, the odds of functional independence defined as mRS ≤1 was significantly increased at 6 months and persisted up to 18 months after a stroke.Link_to_subscribed_fulltex

    Primary stroke prevention worldwide : translating evidence into action

    Get PDF
    Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe

    Correlates of opium use: retrospective analysis of a survey of tribal communities in Arunachal Pradesh, India

    Get PDF
    BACKGROUND: Household survey data of Changlang district, Arunachal Pradesh, were used in the present study to assess the prevalence of opium use among different tribes, and to examine the association between sociodemographic factors and opium use. METHODS: A sample of 3421 individuals (1795 men and 1626 women) aged 15 years and older was analyzed using a multivariate logistic regression model to determine factors associated with opium use. Sociodemographic information such as age, education, occupation, religion, ethnicity and marital status were included in the analysis. RESULTS: The prevalence of opium use was significantly higher (10.6%) among men than among women (2.1%). It varied according to age, educational level, occupation, marital status and religion of the respondents. In both sexes, opium use was significantly higher among Singpho and Khamti tribes compared with other tribes. Multivariate logistic regression indicated that opium use was significantly associated with age, occupation, ethnicity, religion and marital status of the respondents of both sexes. Multivariate rate ratios (MRR) for opium use were significantly higher (4–6 times) among older age groups (≥35 years) and male respondents. In males, the MRR was also significantly higher in respondents of Buddhist and Indigenous religion, while in females, the MRR was significantly higher in Buddhists. Most of the female opium users had taken opium for more than 5 years and were introduced to it by their husbands after marriage. Use of other substances among opium users comprised mainly tobacco (76%) and alcohol (44%). CONCLUSIONS: The study reveals the sociodemographic factors, such as age, sex, ethnicity, religion and occupation, which are associated with opium use. Such information is useful for institution of intervention measures to reduce opium use

    Internet-based guided self-help for glioma patients with depressive symptoms: design of a randomized controlled trial

    Get PDF
    Background: Among glioma patients, depression is estimated to be more prevalent than in both the general population and the cancer patient population. This can have negative consequences for both patients and their primary informal caregivers (e.g., a spouse, family member or close friend). At present, there is no evidence from randomized controlled trials for the effectiveness of psychological treatment for depression in glioma patients. Furthermore, the possibility of delivering mental health care through the internet has not yet been explored in this population. Therefore, a randomized controlled trial is warranted to evaluate the effects of an internet-based, guided self-help intervention for depressive symptoms in glioma patients. Methods/design: The intervention is based on problem-solving therapy. An existing 5-week course is adapted for use by adult glioma patients with mild to moderate depressive symptoms (Center for Epidemiology Studies Depression Scale score ≥12). Sample size calculations yield 126 glioma patients to be included, who are randomly assigned to either the intervention group or a waiting list control group. In addition, we aim to include 63 patients with haematological cancer in a non-central nervous system malignancy control group. Assessments take place at baseline, after 6 and 12 weeks, and after 6 and 12 months. Primary outcome measure is the change in depressive symptoms. Secondary outcome measures include health-related quality of life, fatigue, costs and patient satisfaction. In addition, all patients are asked to assign a primary informal caregiver, who does not participate in the intervention but who is asked to complete similar assessments. Their mood, health-related quality of life and fatigue is evaluated as well. Discussion: This is the first study to evaluate the effects of problem-solving therapy delivered through the internet as treatment for depressive symptoms in glioma patients. If proven effective, this treatment will contribute to the mental health care of glioma patients in clinical practice. Trial registration: Netherlands Trial Register NTR322

    Interventions for acute stroke management in Africa: a systematic review of the evidence

    Get PDF
    Abstract Background The past decades have witnessed a rapid evolution of research on evidence-based acute stroke care interventions worldwide. Nonetheless, the evidence-to-practice gap in acute stroke care remains variable with slow and inconsistent uptake in low-middle income countries (LMICs). This review aims to identify and compare evidence-based acute stroke management interventions with alternative care on overall patient mortality and morbidity outcomes, functional independence, and length of hospital stay across Africa. Methods This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. An electronic search was conducted in six databases comprising MEDLINE, Embase, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, Academic Search Complete and Cochrane Library for experimental and non-experimental studies. Eligible studies were abstracted into evidence tables and their methodological quality appraised using the Joanna Briggs Institute checklist. Data were analysed and presented narratively with reference to observed differences in patient outcomes, reporting p values and confidence intervals for any possible relationship. Results Initially, 1896 articles were identified and 37 fully screened. Four non-experimental studies (three cohort and one case series studies) were included in the final review. One study focused on the clinical efficacy of a stroke unit whilst the remaining three reported on thrombolytic therapy. The results demonstrated a reduction in patient deaths attributed to stroke unit care and thrombolytic therapy. Thrombolytic therapy was also associated with reductions in symptomatic intracerebral haemorrhage (SICH). However, the limited eligible studies and methodological limitations compromised definitive conclusions on the extent of and level of efficacy of evidence-based acute stroke care interventions across Africa. Conclusion Evidence from this review confirms the widespread assertion of low applicability and uptake of evidence-based acute stroke care in LMICs. Despite the limited eligible studies, the overall positive patient outcomes following such interventions demonstrate the applicability and value of evidence-based acute stroke care interventions in Africa. Health policy attention is thus required to ensure widespread applicability of such interventions for improved patients’ outcomes. The review findings also emphasises the need for further research to unravel the reasons for low uptake. Systematic review registration PROSPERO CRD4201605156
    corecore