17 research outputs found

    Climatic Factors Influencing Dengue Hemorrhagic Fever in Kolaka District, Indonesia

    Get PDF
    Dengue hemorrhagic fever in Indonesia is one of the serious health problems and requires understanding the occurrence of this disease. Climate Factors have a role that needs attention in the prevention of DHF disease. Understanding of disease patterns will benefit the health surveillance system and provide a way to tackle this problem. The records of dengue fever cases and climate data for the years 2010-2015 were obtained from the Health Office Kolaka District, southeast Sulawesi province and Meteorology, Climatology and Geophysics Agency in Southeast Sulawesi province, respectively. Data for the period 2010 to 2014 were used for model development through multiple linear regressions. The prediction model was used to forecast dengue cases in 2015 and the predicted results were compared with reported dengue cases in Kolaka in the past and forecasting period. Rainfall, humidity, temperature average, minimum temperature, and maximum temperature are significantly correlated with monthly cases of dengue fever. Predicted results showed a good performance where the model was able to predict 3 out of 5 epidemic outbreak events that occurred in January-March 2015 and November-December 2015. The sensitivity of detecting the outbreaks was estimated to be 60%, the specificity was 100%, positive and negative predictive value were estimated to be 100% and 77.8%, respectively. Climate has a major influence on the occurrence of dengue hemorrhagic fever infection in Kolaka district. Although the predictive model has some limitations in predicting the number of cases of monthly dengue fever, it can estimate the possibility of an outbreak three months in advance with a fairly high accuracy. The predictive model can be used to explain the incident rate of DHF of approximately 71%

    GeoHealth Thai Platform: towards a network to gather expertise, knowledge and resources in health geography

    Get PDF
    International audienceDriven by the recent awareness of the magnitude of climate and environmental changes and their impact on human health, interdisciplinary approaches are increasingly being implemented to understand health inequalities and the dynamics of diseases. Although the availability of data is growing, researchers are facing difficulties in identifying and accessing relevant data and, above all, in using these data, resulting in a paradoxically limited use of geographical information.The GeoHealth Thai Platform project aims to promote geographical and environmental approaches in the understanding of health inequalities through the use of Geographic Information Systems and Remote Sensing techniques. It proposes to address the difficulties encountered by many individual researchers by:•gathering experts and researchers together during workshops, in order to define the needs and identify the barriers to be solved; •training and providing expertise to researchers for the use of Geographic Information Systems and Remote Sensing techniques; •building an open geocatalogue to facilitate the access to spatial data.This project will be supported by a dedicated website, which will integrate the catalogue of geo-referenced data, together with online resources (documents, courses and tutorials). This poster will present the geocatalogue, at the heart of the project, as well as current and future project activities.GeoHealth Thai Platform is funded by Franco-Thai Cooperation Program in Higher Education and Research 2013-2014

    Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    No full text
    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms

    Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    No full text
    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms

    Heavy Metal Contamination Near Industrial Estate Areas in Phra Nakhon Si Ayutthaya Province, Thailand and Human Health Risk Assessment

    No full text
    Industrial activity is one of the significant sources of environmental contamination with heavy metals, especially in developing countries. Flood can also lead to the distribution of toxic substances into the environment, regarding the Thailand flood in 2011 as some industrial estates are affected, leading to concern about heavy metals from industrial wastewater contamination. We aimed to measure the levels of Cd, Cr, Cu, Ni, Mn, Pb, and Zn in river and stream water, sediment, and fish collected from the area around the industrial estates in Uthai District and Bangpa-in District of Phra Nakhon Si Ayutthaya Province, following the floods of 2011. The results revealed that heavy metal levels in water did not exceed Thailand surface water quality standards, except for Mn levels at one sampling site. Metal levels in sediment and fish samples also did not exceed published standards. The hazard quotient for fish consumption was highest for Ni (0.2178) in Trichopodus trichopterus collected from the area near the industrial estate in Bangpa-in District, while the hazard index from Cd, Cr, and Cu exposure were 0.86966, which was lower than 1, indicating that the health risks for these seven metals were within acceptable ranges

    Relationships between Meteorological Parameters and Particulate Matter in Mae Hong Son Province, Thailand

    No full text
    Meteorological parameters play an important role in determining the prevalence of ambient particulate matter (PM) in the upper north of Thailand. Mae Hong Son is a province located in this region and which borders Myanmar. This study aimed to determine the relationships between meteorological parameters and ambient concentrations of particulate matter less than 10 µm in diameter (PM10) in Mae Hong Son. Parameters were measured at an air quality monitoring station, and consisted of PM10, carbon monoxide (CO), ozone (O3), and meteorological factors, including temperature, rainfall, pressure, wind speed, wind direction, and relative humidity (RH). Nine years (2009⁻2017) of pollution and climate data obtained from the Thai Pollution Control Department (PCD) were used for analysis. The results of this study indicate that PM10 is influenced by meteorological parameters; high concentration occurred during the dry season and northeastern monsoon seasons. Maximum concentrations were always observed in March. The PM10 concentrations were significantly related to CO and O3 concentrations and to RH, giving correlation coefficients of 0.73, 0.39, and −0.37, respectively (p-value < 0.001). Additionally, the hourly PM10 concentration fluctuated within each day. In general, it was found that the reporting of daily concentrations might be best suited to public announcements and presentations. Hourly concentrations are recommended for public declarations that might be useful for warning citizens and organizations about air pollution. Our findings could be used to improve the understanding of PM10 concentration patterns in Mae Hong Son and provide information to better air pollution measures and establish a warning system for the province

    Drinking Water Investigation of Hill Tribes: A Case Study in Northern Thailand

    No full text
    Hill tribes are a group of people who live in remote areas in northern Thailand. They typically use untreated water for drinking, that can lead several health problems. The six main hill tribes—Akha, Hmong, Karen, Lahu, Lisu, and Yao—were selected for the study. A validated questionnaire was used for data collection. Water samples were collected from the selected villages and tested for the quality at Mae Fah Luang University, Thailand. Results: the major sources of drinking water were mountain water supplies (74.3%), and commercial bottled water (21.4%). Easy access, sufficiency for the whole year, and food-drug administration sign labeled were the criteria used for selecting sources of drinking water. Colorless and safety were also used as a selection criteria for their drinking water in some tribes. Lisu, Karen, and Hmong treated their drinking water by boiling, while Akha and Lahu stored the water in certain containers to allow particle settling before drinking water without treatment. 42.0% of the water samples had a turbidity values <5 NTU, and total coliform and fecal coliform bacteria were detected in 100.0% of the samples. To prevent water-borne diseases among the hill tribe people, appropriate water treatments such as boiling, filtration, and disinfection are recommended

    Hepatic protein Carbonylation profiles induced by lipid accumulation and oxidative stress for investigating cellular response to non-alcoholic fatty liver disease in vitro

    No full text
    Abstract Background Non-alcoholic fatty liver disease (NAFLD) is caused by excessive accumulation of fat within the liver, leading to further severe conditions such as non-alcoholic steatohepatitis (NASH). Progression of healthy liver to steatosis and NASH is not yet fully understood in terms of process and response. Hepatic oxidative stress is believed to be one of the factors driving steatosis to NASH. Oxidative protein modification is the major cause of protein functional impairment in which alteration of key hepatic enzymes is likely to be a crucial factor for NAFLD biology. In the present study, we aimed to discover carbonylated protein profiles involving in NAFLD biology in vitro. Methods Hepatocyte cell line was used to induce steatosis with fatty acids (FA) in the presence and absence of menadione (oxidative stress inducer). Two-dimensional gel electrophoresis-based proteomics and dinitrophenyl hydrazine derivatization technique were used to identify carbonylated proteins. Sequentially, in order to view changes in protein carbonylation pathway, enrichment using Funrich algorithm was performed. The selected carbonylated proteins were validated with western blot and carbonylated sites were further identified by high-resolution LC-MS/MS. Results Proteomic results and pathway analysis revealed that carbonylated proteins are involved in NASH pathogenesis pathways in which most of them play important roles in energy metabolisms. Particularly, carbonylation level of ATP synthase subunit α (ATP5A), a key protein in cellular respiration, was reduced after FA and FA with oxidative stress treatment, whereas its expression was not altered. Carbonylated sites on this protein were identified and it was revealed that these sites are located in nucleotide binding region. Modification of these sites may, therefore, disturb ATP5A activity. As a consequence, the lower carbonylation level on ATP5A after FA treatment solely or with oxidative stress can increase ATP production. Conclusions The reduction in carbonylated level of ATP5A might occur to generate more energy in response to pathological conditions, in our case, fat accumulation and oxidative stress in hepatocytes. This would imply the association between protein carbonylation and molecular response to development of steatosis and NASH

    Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli

    No full text
    The influence of temperature on bacterial virulence has been studied worldwide from the viewpoint of climate change and global warming. The bacterium enteroaggregative Escherichia coli (EAEC) is the causative agent of watery diarrhea and shows an increasing incidence worldwide. Its pathogenicity is associated with the virulence factors aggregative adherence fimbria type I and II (AAFI and AAFII), encoded by aggA and aafA in EAEC strains 17-2 and 042, respectively. This study focused on the effect of temperature increases from 29 °C to 40 °C on fimbrial gene expression using real-time PCR, and on its virulence using an aggregative adherence assay and biofilm formation assay. Incubation at 32 °C caused an up-regulation in both EAEC strains 17-2 and strain 042 virulence gene expression. EAEC strain 042 cultured at temperature above 32 °C showed down-regulation of aafA expression except at 38 °C. Interestingly, EAEC cultured at a high temperature showed a reduced adherence to cells and an uneven biofilm formation. These results provide evidence that increases in temperature potentially affect the virulence of pathogenic EAEC, although the response varies in each strain

    Occurrence, distribution, and ecological risk assessment of heavy metals in Chao Phraya River, Thailand

    No full text
    Abstract Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand’s acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman’s correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals’ HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River’s surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem
    corecore