228 research outputs found

    Innate Immune Recognition and Inflammasome Activation in Listeria Monocytogenes Infection

    Get PDF
    Listeria monocytogenes is an intracellular, Gram-positive bacterium that can cause life-threatening illness especially in immunocompromised individuals and newborns. The pathogen propagates within the cytosol of various host cells after escaping from the phagosomal compartment depending on the cytolysin listeriolysin O. While L. monocytogenes can manipulate the endocytic and many host-cell signaling cascades to its advantage, host cells are however capable of detecting Listeria infection at different cellular compartments by expressing innate immune receptors that trigger antibacterial defense pathways. These receptors include the Toll-like receptors, NOD-like receptors (NLRs), and cytosolic DNA sensors. Some NLRs as well as the DNA sensor AIM2 form multiprotein complexes called inflammasomes. Inflammasomes regulate caspase-1-dependent production of the key inflammatory cytokines IL-1β and IL-18 as well as pyroptotic cell death in L. monocytogenes-infected cells. This review describes the current knowledge about innate immune sensing and inflammasome activation in Listeria infection

    Malarone treatment failure not associated with previously described mutations in the cytochrome b gene

    Get PDF
    Malarone(® )(atovaquone-proguanil) is an effective drug for the treatment and prophylaxis of multidrug-resistant falciparum malaria. However, first cases of resistance have been reported, which are associated with mutations at codon 268 of the parasite's cytochrome b gene. We report the first case of Malarone(® )treatment failure from Central Africa. Drug concentration was well within curative range. Pre- and post-treatment Plasmodium falciparum isolates revealed codon 268 wild-type alleles, and no other mutations of the putative atovaquone-binding domain. These findings illustrate the spread of atovaquone-proguanil-resistance in Africa and question the usefulness of codon 268 as the only target for the surveillance of its emergence

    Deregulation of the CEACAM Expression Pattern Causes Undifferentiated Cell Growth in Human Lung Adenocarcinoma Cells

    Get PDF
    CEACAM1, CEA/CEACAM5, and CEACAM6 are cell adhesion molecules (CAMs) of the carcinoembryonic antigen (CEA) family that have been shown to be deregulated in lung cancer and in up to 50% of all human cancers. However, little is known about the functional impact of these molecules on undifferentiated cell growth and tumor progression. Here we demonstrate that cell surface expression of CEACAM1 on confluent A549 human lung adenocarcinoma cells plays a critical role in differentiated, contact-inhibited cell growth. Interestingly, CEACAM1-L, but not CEACAM1-S, negatively regulates proliferation via its ITIM domain, while in proliferating cells no CEACAM expression is detectable. Furthermore, we show for the first time that CEACAM6 acts as an inducer of cellular proliferation in A549 cells, likely by interfering with the contact-inhibiting signal triggered by CEACAM1-4L, leading to undifferentiated anchorage-independent cell growth. We also found that A549 cells expressed significant amounts of non-membrane anchored variants of CEACAM5 and CEACAM6, representing a putative source for the increased CEACAM5/6 serum levels frequently found in lung cancer patients. Taken together, our data suggest that post-confluent contact inhibition is established and maintained by CEACAM1-4L, but disturbances of CEACAM1 signalling by CEACAM1-4S and other CEACAMs lead to undifferentiated cell growth and malignant transformation

    Induction of Krüppel-Like Factor 4 Mediates Polymorphonuclear Neutrophil Activation in Streptococcus pneumoniae Infection

    Get PDF
    The recruitment and activation of polymorphonuclear neutrophils (PMNs) are of central importance for the elimination of pathogens in bacterial infections. We investigated the Streptococcus pneumoniae-dependent induction of the transcription factor Kruppel-like factor (KLF) 4 in PMNs as a potential regulator of PMN activation. We found that KLF4 expression is induced in human blood-derived PMNs in a time- and dose-dependent manner by wild-type S. pneumoniae and capsule knockout mutants. Unencapsulated knockout mutants induced stronger KLF4 expression than encapsulated wild types. The presence of autolysin LytA-competent (thus viable) pneumococci and LytA-mediated bacterial autolysis were required for KLF4 induction in human and murine PMNs. LyzMcre-mediated knockdown of KLF4 in murine blood-derived PMNs revealed that KLF4 influences pneumococci killing and increases the release of the proinflammatory cytokines tumor necrosis factor alpha and keratinocyte chemoattractant and decreases the release of the anti-inflammatory cytokine interleukin-10. Thus, S. pneumoniae induces KLF4 expression in PMNs, which contributes to PMN activation in S. pneumoniae infection

    PKCα Deficiency in Mice Is Associated with Pulmonary Vascular Hyperresponsiveness to Thromboxane A2 and Increased Thromboxane Receptor Expression

    Get PDF
    Pulmonary vascular hyperresponsiveness is a main characteristic of pulmonary arterial hypertension (PAH). In PAH patients, elevated levels of the vasoconstrictors thromboxane A2 (TXA2), endothelin (ET)-1 and serotonin further contribute to pulmonary hypertension. Protein kinase C (PKC) isozyme alpha (PKCα) is a known modulator of smooth muscle cell contraction. However, the effects of PKCα deficiency on pulmonary vasoconstriction have not yet been investigated. Thus, the role of PKCα in pulmonary vascular responsiveness to the TXA2 analog U46619, ET-1, serotonin and acute hypoxia was investigated in isolated lungs of PKCα-/- mice and corresponding wild-type mice, with or without prior administration of the PKC inhibitor bisindolylmaleimide I or Gö6976. mRNA was quantified from microdissected intrapulmonary arteries. We found that broad-spectrum PKC inhibition reduced pulmonary vascular responsiveness to ET-1 and acute hypoxia and, by trend, to U46619. Analogously, selective inhibition of conventional PKC isozymes or PKCα deficiency reduced ET-1-evoked pulmonary vasoconstriction. The pulmonary vasopressor response to serotonin was unaffected by either broad PKC inhibition or PKCα deficiency. Surprisingly, PKCα-/- mice showed pulmonary vascular hyperresponsiveness to U46619 and increased TXA2 receptor (TP receptor) expression in the intrapulmonary arteries. To conclude, PKCα regulates ET-1-induced pulmonary vasoconstriction. However, PKCα deficiency leads to pulmonary vascular hyperresponsiveness to TXA2, possibly via increased pulmonary arterial TP receptor expression

    Clonal expansion of CD4+CD8+ T cells in an adult patient with Mycoplasma pneumoniae-associated Erythema multiforme majus

    Get PDF
    Background: Erythema multiforme (EM) is an acute, immune-mediated mucocutaneous disease, most often preceded by herpes simplex virus (HSV) infection or reactivation. Mycoplasma pneumoniae (Mp) is considered the second major trigger of EM and is often associated with an atypical and more severe presentation of disease, characterized by prominent mucosal involvement. However, contrary to HSV-associated Erythema multiforme (HAEM), immunological mechanisms of Mp-associated EM remain unclear. Case presentation: We present the case of a 50-year-old male patient presenting with community-acquired pneumonia (CAP) and erythema multiforme majus (EMM). Acute Mp infection was diagnosed by seroconversion, with no evidence of HSV infection as a cause of EMM. We performed immune phenotyping of blister fluid (BF) and peripheral blood (PB) T cells and detected a clonally expanded TCRV beta 2(+) T cell population that was double positive for CD4 and CD8, and expressed the cytotoxic markers granulysin and perforin. This CD4(+)CD8(+) population comprised up to 50.7% of BF T cells and 24.9% of PB T cells. Two years prior to the onset of disease, the frequency of PB CD4(+)CD8(+)T cells had been within normal range and it gradually returned to baseline levels with the resolution of symptoms, suggesting an involvement of this population in EMM disease pathophysiology. Conclusions: This report is the first to provide a phenotypic description of lesional T cells in Mp-associated EMM. Characterizing the local immune response might help to address pathophysiological questions and warrants further systematic research

    Genetic Regulation of Cytokine Response in Patients with Acute Community-Acquired Pneumonia

    Get PDF
    Background: Community-acquired pneumonia (CAP) is an acute disease condition with a high risk of rapid deteriorations. We analysed the influence of genetics on cytokine regulation to obtain a better understanding of patient’s heterogeneity. Methods: For up to N = 389 genotyped participants of the PROGRESS study of hospitalised CAP patients, we performed a genome-wide association study of ten cytokines IL-1β, IL-6, IL-8, IL-10, IL-12, MCP-1 (MCAF), MIP-1α (CCL3), VEGF, VCAM-1, and ICAM-1. Consecutive secondary analyses were performed to identify independent hits and corresponding causal variants. Results: 102 SNPs from 14 loci showed genome-wide significant associations with five of the cytokines. The most interesting associations were found at 6p21.1 for VEGF (p = 1.58 × 10−20), at 17q21.32 (p = 1.51 × 10−9) and at 10p12.1 (p = 2.76 × 10−9) for IL-1β, at 10p13 for MIP-1α (CCL3) (p = 2.28 × 10−9), and at 9q34.12 for IL-10 (p = 4.52 × 10−8). Functionally plausible genes could be assigned to the majority of loci including genes involved in cytokine secretion, granulocyte function, and cilial kinetics. Conclusion: This is the first context-specific genetic association study of blood cytokine concentrations in CAP patients revealing numerous biologically plausible candidate genes. Two of the loci were also associated with atherosclerosis with probable common or consecutive pathomechanisms

    protection by adrenomedullin

    Get PDF
    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p<0.01; prevention of pulmonary restriction) and against VILI- induced liver and gut injury in pneumonia (91% reduction of AST levels p<0.05, 96% reduction of alanine aminotransaminase (ALT) levels p<0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia
    • …
    corecore