1,974 research outputs found

    Complexity versus certainty in understanding species’ declines

    Get PDF
    Aim Our understanding of and ability to predict species declines is limited, despite decades of study. We sought to expand our understanding of species declines within a regional landscape by testing models using both traditional hypotheses and those derived from a complex adaptive systems approach. Location Our study area was the dry mixed grassland of south-eastern Alberta, Canada, one of the largest remnants of native grassland in North America, and the adjacent grassland in Saskatchewan. Methods We used the breeding birds of the grassland to test the relationship between species declines and a suite of traits associated with decline (such as size, specialization and rarity, as well as distance to edge of a discontinuity, and edge of geographic range) in a stepwise regression with AICc values and bootstrapping via model averaging, followed by a refit procedure to obtain model-averaged parameter estimates. We used both provincial government and Breeding Bird Survey (BBS) classifications of decline. We also modelled degree of decline in the Alberta and Saskatchewan grasslands, which differ in amount of habitat remaining, to test whether severity of decline was explained by the same traits as species decline/not- decline. Results We found that the model for government-defined decline fulfilled government expectations that species’ extinction risk is a function of being large, specialized, rare and carnivorous, whereas the model for BBS-defined decline suggested that the biological reality of decline is more complex, requiring the need to explicitly model scale-specific patterns. Furthermore, species decline/ not- decline was explained by different traits than those that fit degree of decline, though complex systems- derived traits featured in both sets of models. Main conclusions Traditional approaches to predict species declines (e.g. government processes or IUCN Red Lists), may be too simplistic and may therefore misguide management and conservation. Using complex systems approaches that account for scale-specific patterns and processes have the potential to overcome these limitations

    The adaptive cycle: More than a metaphor

    Get PDF
    The adaptive cycle and its extension to panarchy (nested adaptive cycles) has been a useful metaphor and conceptual model for understanding long-term dynamics of change in ecological and social–ecological systems. We argue that adaptive cycles are ubiquitous in complex adaptive systems because they reflect endogenously generated dynamics as a result of processes of self-organization and evolution. We synthesize work from a wide array of fields to support this claim. If dynamics of growth, conservation, collapse and renewal are endogenous dynamics of complex adaptive systems, then there ought to be signals of system change over time that reflect this. We describe a series of largely thermodynamically based indicators that have been developed for this purpose, and we add a critical and heretofore missing component–namely, that of understanding dynamics of change (adaptive cycles) at objectively identified spatial and temporal scales nested within each system, instead of solely at the system level. The explicit consideration of scales, when coupled with selective indicators, may circumvent the need for multiple indicators to capture system dynamics and will provide a richer picture of system trajectory than that offered by a single-scale analysis. We describe feasible ways in which researchers could systematically and quantitatively look for signatures of adaptive cycle dynamics at scales within ecosystems, rather than relying on metaphor and largely qualitative descriptions

    The adaptive cycle: More than a metaphor

    Get PDF
    The adaptive cycle and its extension to panarchy (nested adaptive cycles) has been a useful metaphor and conceptual model for understanding long-term dynamics of change in ecological and social–ecological systems. We argue that adaptive cycles are ubiquitous in complex adaptive systems because they reflect endogenously generated dynamics as a result of processes of self-organization and evolution. We synthesize work from a wide array of fields to support this claim. If dynamics of growth, conservation, collapse and renewal are endogenous dynamics of complex adaptive systems, then there ought to be signals of system change over time that reflect this. We describe a series of largely thermodynamically based indicators that have been developed for this purpose, and we add a critical and heretofore missing component–namely, that of understanding dynamics of change (adaptive cycles) at objectively identified spatial and temporal scales nested within each system, instead of solely at the system level. The explicit consideration of scales, when coupled with selective indicators, may circumvent the need for multiple indicators to capture system dynamics and will provide a richer picture of system trajectory than that offered by a single-scale analysis. We describe feasible ways in which researchers could systematically and quantitatively look for signatures of adaptive cycle dynamics at scales within ecosystems, rather than relying on metaphor and largely qualitative descriptions

    The adaptive cycle: More than a metaphor

    Get PDF
    The adaptive cycle and its extension to panarchy (nested adaptive cycles) has been a useful metaphor and conceptual model for understanding long-term dynamics of change in ecological and social–ecological systems. We argue that adaptive cycles are ubiquitous in complex adaptive systems because they reflect endogenously generated dynamics as a result of processes of self-organization and evolution. We synthesize work from a wide array of fields to support this claim. If dynamics of growth, conservation, collapse and renewal are endogenous dynamics of complex adaptive systems, then there ought to be signals of system change over time that reflect this. We describe a series of largely thermodynamically based indicators that have been developed for this purpose, and we add a critical and heretofore missing component–namely, that of understanding dynamics of change (adaptive cycles) at objectively identified spatial and temporal scales nested within each system, instead of solely at the system level. The explicit consideration of scales, when coupled with selective indicators, may circumvent the need for multiple indicators to capture system dynamics and will provide a richer picture of system trajectory than that offered by a single-scale analysis. We describe feasible ways in which researchers could systematically and quantitatively look for signatures of adaptive cycle dynamics at scales within ecosystems, rather than relying on metaphor and largely qualitative descriptions

    The adaptive cycle: More than a metaphor

    Get PDF
    The adaptive cycle and its extension to panarchy (nested adaptive cycles) has been a useful metaphor and conceptual model for understanding long-term dynamics of change in ecological and social–ecological systems. We argue that adaptive cycles are ubiquitous in complex adaptive systems because they reflect endogenously generated dynamics as a result of processes of self-organization and evolution. We synthesize work from a wide array of fields to support this claim. If dynamics of growth, conservation, collapse and renewal are endogenous dynamics of complex adaptive systems, then there ought to be signals of system change over time that reflect this. We describe a series of largely thermodynamically based indicators that have been developed for this purpose, and we add a critical and heretofore missing component–namely, that of understanding dynamics of change (adaptive cycles) at objectively identified spatial and temporal scales nested within each system, instead of solely at the system level. The explicit consideration of scales, when coupled with selective indicators, may circumvent the need for multiple indicators to capture system dynamics and will provide a richer picture of system trajectory than that offered by a single-scale analysis. We describe feasible ways in which researchers could systematically and quantitatively look for signatures of adaptive cycle dynamics at scales within ecosystems, rather than relying on metaphor and largely qualitative descriptions

    Deathcore, creativity, and scientific thinking

    Get PDF
    Background Major scientific breakthroughs are generally the result of materializing creative ideas, the result of an inductive process that sometimes spontaneously and unexpectedly generates a link between thoughts and/or objects that did not exist before. Creativity is the cornerstone of scientific thinking, but scientists in academia are judged by metrics of quantification that often leave little room for creative thinking. In many scientific fields, reductionist approaches are rewarded and new ideas viewed skeptically. As a result, scientific inquiry is often confined to narrow but safe disciplinary ivory towers, effectively preventing profoundly creative explorations that could yield unexpected benefits. This paper argues how apparently unrelated fields specifically music and belief systems can be combined in a provocative allegory to provide novel perspectives regarding patterns in nature, thereby potentially inspiring innovation in the natural, social and other sciences. The merger between basic human tensions such as those embodied by religion and music, for example the heavy metal genre of deathcore, may be perceived as controversial, challenging, and uncomfortable. However, it is an example of moving the thinking process out of unconsciously established comfort zones, through the connection of apparently unrelated entities. We argue that music, as an auditory art form, has the potential to enlighten and boost creative thinking in science. Metal, as a fast evolving and diversifying extreme form of musical art, may be particularly suitable to trigger surprising associations in scientific inquiry. This may pave the way for dealing with questions about what we don´t know that we don´t know in a fast-changing planet

    Letter Resisting Resilience Theory: AResponse to Connelland Ghedini

    Get PDF
    ConnellandGhedini [1] arguethatecolo- gistsareprimarily [1TD$DIF]concernedwithcommu- nitychangeandtendtoignoreprocesses liketrophiccompensationthatcontribute to communityorsystem-levelstability. Resilience,theyclaim,isthestudyof change,andresearchersshouldspend moretimestudyingstabilizingprocesses to betterpredictthetypesofchanges documentedbyecologistswhostudyresil- ience [2,3]. Thebulkoftheirpaper addressesresilienceandrelatedconcepts to contextualizeresistancetochange,but theirargumentsarediminishedbecause theauthorsfailtoexplicitlyplacetheirwork withintherangeofresilienceconceptsthat haveproliferatedacrossacademicdisci- plines.Moreimportantly,thepaperfurthers confusionregardingcoreecologicalresil- ienceconcepts.Withinthedisciplineof ecology,resilienceconceptshavebeen developedinafundamentallycohesive way [4]. Understandingtheresilienceof complexsystemsofhumansandnature duringthistimeofrapidglobalchangeis importantandthemisuseorcasualuseof conceptswithspecific meaningismore thansimplyatrivialpointofcontention;it potentiallyobscuresprocessesandprop- ertiesthathavedirectrelevancetohuman- ity\u27sinteractionwiththeenvironment

    Exposure to Hurricanes Eta and Iota in Farming Communities in Northern and Central Nicaragua

    Get PDF
    Within just two weeks, Central America endured two late-season Category 4 hurricanes. On November 3rd, 2020, Hurricane Eta made landfall along Nicaragua’s northern Caribbean coast. On the 17th of the same month, Hurricane Iota brought further devastation, landing a mere 15 miles further south than Eta. Persistent rainfall and heavy winds resulted in flash floods, river floods, landslides, and extensive agricultural, institutional, and residential infrastructure damage. Overall, the storms affected about 7.5 million people across Central America and the Caribbean region. The rapid succession of the two storms made separating damages difficult, but it is estimated that Eta was directly responsible for at least 165 deaths and 6.8billionworthofdamage.Iotadirectlycontributedtoanadditional67deathsand6.8 billion worth of damage. Iota directly contributed to an additional 67 deaths and 1.4 billion worth of damage, nearly half of which comprised damage in Nicaragua alone. Many fatal events occurred in the Jinotega Department of Nicaragua, where one mudslide buried at least 30 people. Loss of power, water, food, shelter, and telephone service was widespread throughout the region. This poster presents a spatial analysis of the intensity and movement of both hurricanes across Nicaragua. We will share a preliminary analysis of vulnerability and impacts focusing on crop devastation and landslides in northern and central Nicaragua. Finally, we will share an initial assessment of institutional and community response in smallholder farming communities, together with plans for follow-up field research. Future evaluation of survey data collected from smallholder farms will better our understanding of long-term impacts and the success of different hazard responses
    • …
    corecore