639 research outputs found

    Community capacity building and post-disaster psychosocial reconstruction

    Get PDF
    Conference Theme: Wenchuan earthquake, the path forwardpostprintThe International Disaster Reduction Conference (IDRC) Chengdu 2009: Wenchuan earthquake, the path forward, Chengdu, China, 13-15 July 2009

    Investigation on Photovoltaic Performance based on Matchstick-Like Cu2S–In2S3Heterostructure Nanocrystals and Polymer

    Get PDF
    In this paper, we synthesized a novel type II cuprous sulfide (Cu2S)–indium sulfide (In2S3) heterostructure nanocrystals with matchstick-like morphology in pure dodecanethiol. The photovoltaic properties of the heterostructure nanocrystals were investigated based on the blends of the nanocrystals and poly(2-methoxy-5-(2′-ethylhexoxy)-p-phenylenevinylene) (MEH-PPV). In comparison with the photovoltaic properties of the blends of Cu2S or In2S3nanocrystals alone and MEH-PPV, the power conversion efficiency of the hybrid device based on blend of Cu2S–In2S3and MEH-PPV is enhanced by ~3–5 times. This improvement is consistent with the improved exciton dissociation or separation and better charge transport abilities in type II heterostructure nanocrystals

    Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding

    Get PDF
    The WC reinforced Fe-based amorphous composite coatings were prepared by laser cladding with rectangular spot. The effect of laser remelting on the microstructure and properties of composite coatings was investigated. The results showed that laser remelting can reduce the cracks and porosities of the cladding coating and improve its surface quality. Large amounts of crystalline phases were precipitated at the top of the cladding and remelting coatings. However, the microstructure at the top of the remelting coating was finer compared to that at the top of the cladding coating. With increasing distance from the surface of substrate, the amorphous phase appeared within the remelting coating and large amounts of carbides rich in Fe and Mo, Fe23B6, gamma-Fe and Cr-9.1.Si-0.9 Slag phases were also precipitated in the remelting coating. As a result, the corrosion resistance of the remelting coating was higher than that of the cladding coating. The microhardness of the remelting coating was approximately 1.13 times higher than that of the cladding coating. (C) 2018 Elsevier Ltd. All rights reserved

    Monotone and fast computation of Euler’s constant

    Get PDF
    Abstract We construct sequences of finite sums ( l ˜ n ) n ≥ 0 (l~n)n0(\tilde{l}_{n})_{n\geq 0} and ( u ˜ n ) n ≥ 0 (u~n)n0(\tilde{u}_{n})_{n\geq 0} converging increasingly and decreasingly, respectively, to the Euler-Mascheroni constant γ at the geometric rate 1/2. Such sequences are easy to compute and satisfy complete monotonicity-type properties. As a consequence, we obtain an infinite product representation for 2 γ 2γ2^{\gamma } converging in a monotone and fast way at the same time. We use a probabilistic approach based on a differentiation formula for the gamma process

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio

    A method to detect single-nucleotide polymorphisms accounting for a linkage signal using covariate-based affected relative pair linkage analysis

    Get PDF
    We evaluate an approach to detect single-nucleotide polymorphisms (SNPs) that account for a linkage signal with covariate-based affected relative pair linkage analysis in a conditional-logistic model framework using all 200 replicates of the Genetic Analysis Workshop 17 family data set. We begin by combining the multiple known covariate values into a single variable, a propensity score. We also use each SNP as a covariate, using an additive coding based on the number of minor alleles. We evaluate the distribution of the difference between LOD scores with the propensity score covariate only and LOD scores with the propensity score covariate and a SNP covariate. The inclusion of causal SNPs in causal genes increases LOD scores more than the inclusion of noncausal SNPs either within causal genes or outside causal genes. We compare the results from this method to results from a family-based association analysis and conclude that it is possible to identify SNPs that account for the linkage signals from genes using a SNP-covariate-based affected relative pair linkage approach

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    In-situ FT-IR study of high pressure syngas conversion over Rh/SiO2 and Rh/NaY catalysts

    Get PDF
    High pressure syngas [V(CO) : V(H-2) = 1] conversion over unpromoted Rh catalyst supported on silica and zeolite NaY were studied at 250 degreesC with an in-situ. IR cell that avoided contamination of iron carbonyls. Change of the syngas pressure produced no effect on the IR spectrum of Rh/SiO2; bridged and linear CO on Rh clusters were the only detectable surface species under 0.1 to 1.0 MPa of flowing syngas. In addition to the bridged and linear CO species, two types of dicarbonyls [Rh(I)(CO)(2)] and a small amount of Rh-6(CO)(16) were formed when Rh/NaY was exposed to 0.1 MPa syngas. Increasing of the syngas pressure to 1. 0 MPa over Rh/NaY resulted in transformation of the dicarbonyls to Rh-6(CO)(16) and probably a mononuclear medium carbonyl featuring an absorption 2042 cm(-1). The detectable reaction products adsorbed on Rh/NaY catalyst under 1.0 MPa were monodentate and bidentate acetates. These surface species were maintained even after releasing the syngas pressure back to 0.1 MPa. Thus, a remarkable difference exists in the effect of syngas pressure on the strtucture of Rh catalysts: reconstruction of Rh catalyst under high pressure of syngas occurs in zeolite NaY but not on silica. Reactivity of the adsorbed surface species toward hydrogen after the catalyst reconstruction suggests that the monodentate acetate groups are responsible for the selective formation of acetic acid from syngas over the Rh/NaY catalyst

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films

    Get PDF
    Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive mid-gap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges
    corecore