4,875 research outputs found

    Comparative Analysis of Molecular Clouds in M31, M33 and the Milky Way

    Get PDF
    We present BIMA observations of a 2\arcmin field in the northeastern spiral arm of M31. In this region we find six giant molecular clouds that have a mean diameter of 57±\pm13 pc, a mean velocity width of 6.5±\pm1.2 \kms, and a mean molecular mass of 3.0 ±\pm 1.6 ×\times 105^5\Msun. The peak brightness temperature of these clouds ranges from 1.6--4.2 K. We compare these clouds to clouds in M33 observed by \citet{wilson90} using the OVRO millimeter array, and some cloud complexes in the Milky Way observed by \cite{dame01} using the CfA 1.2m telescope. In order to properly compare the single dish data to the spatially filtered interferometric data, we project several well-known Milky Way complexes to the distance of Andromeda and simulate their observation with the BIMA interferometer. We compare the simulated Milky Way clouds with the M31 and M33 data using the same cloud identification and analysis technique and find no significant differences in the cloud properties in all three galaxies. Thus we conclude that previous claims of differences in the molecular cloud properties between these galaxies may have been due to differences in the choice of cloud identification techniques. With the upcoming CARMA array, individual molecular clouds may be studied in a variety of nearby galaxies. With ALMA, comprehensive GMC studies will be feasible at least as far as the Virgo cluster. With these data, comparative studies of molecular clouds across galactic disks of all types and between different galaxy disks will be possible. Our results emphasize that interferometric observations combined with the use of a consistent cloud identification and analysis technique will be essential for such forthcoming studies that will compare GMCs in the Local Group galaxies to galaxies in the Virgo cluster.Comment: Accepted for Publication in the Astrophysical Journa

    Summative behaviour change evaluation of up-to-date metered energy feedback in European public buildings

    Get PDF
    Energy consumption practices and behaviour are increasingly an important focus of attention, for energy efficiency measures. Such is the demand caused by behaviour at the level of the individual, it may cancel out the benefits of engineering solutions, such as more energy efficient appliances (Adua, 2010). This paper focuses on an evaluation of the SMARTSPACES project and its effect on energy-related behaviour change. The project provided two services: an energy management service (EMS) and an energy decision support service (EDSS). These services were implemented in over 450 public buildings across 11 European cities in 8 European countries (Serbia, France, Germany, Italy, The Netherlands, Spain, Turkey and United Kingdom). Building professionals (energy managers) primarily used the EMS and building staff used the EDSS. These services intended to inform, support and enable target audiences to use up-to-date metered feedback to reduce energy use in public buildings. The theory of change that underpins the evaluation framework is based in the Elaboration Likelihood Model which aims to understand how communication can influence attitudes and the Theory of Planned Behaviour that examines which attitudes are more likely to predict intentions and behaviours (Wilson, 2014). The paper presents results of ex-ante and ex-post surveys to building staff about their levels of awareness, attitudes, perceived control behaviour and intentions in three selected cities: Bristol, Leicester and Venlo. Outcomes varied across the examined cities depending upon the type of information presented, the level of engagement of users with the energy saving campaigns and the amount of previous energy management work undertaken by buildings’ facilities and energy management professionals

    Testing a Simplified Version of Einstein's Equations for Numerical Relativity

    Get PDF
    Solving dynamical problems in general relativity requires the full machinery of numerical relativity. Wilson has proposed a simpler but approximate scheme for systems near equilibrium, like binary neutron stars. We test the scheme on isolated, rapidly rotating, relativistic stars. Since these objects are in equilibrium, it is crucial that the approximation work well if we are to believe its predictions for more complicated systems like binaries. Our results are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107

    Micro-drive Array for Chronic in vivo Recording: Tetrode Assembly

    Get PDF
    The tetrode, a bundle of four electrodes, has proven to be a valuable tool for the simultaneous recording of multiple neurons in-vivo. The differential amplitude of action potential signatures over the channels of a tetrode allows for the isolation of single-unit activity from multi-unit signals. The ability to precisely control the stereotaxic location and depth of the tetrode is critical for studying coordinated neural activity across brain regions. In combination with a micro-drive array, it is possible to achieve precise placement and stable control of many tetrodes over the course of days to weeks. In this protocol, we demonstrate how to fabricate and condition tetrodes using basic tools and materials, install the tetrodes into a multi-drive tetrode array for chronic in-vivo recording in the rat, make ground wire connections to the micro-drive array, and attach a protective cone onto the micro-drive array in order to protect the tetrodes from physical contact with the environment

    Micro-drive Array for Chronic in vivo Recording: Drive Fabrication

    Get PDF
    Chronic recording of large populations of neurons is a valuable technique for studying the function of neuronal circuits in awake behaving rats. Lightweight recording devices carrying a high density array of tetrodes allow for the simultaneous monitoring of the activity of tens to hundreds of individual neurons. Here we describe a protocol for the fabrication of a micro-drive array with twenty one independently movable micro-drives. This device has been used successfully to record from hippocampal and cortical neurons in our lab. We show how to prepare a custom designed, 3-D printed plastic base that will hold the micro-drives. We demonstrate how to construct the individual micro-drives and how to assemble the complete micro-drive array. Further preparation of the drive array for surgical implantation, such as the fabrication of tetrodes, loading of tetrodes into the drive array and gold-plating, is covered in a subsequent video article

    Modeling the Emergence of Whisker Direction Maps in Rat Barrel Cortex

    Get PDF
    Based on measuring responses to rat whiskers as they are mechanically stimulated, one recent study suggests that barrel-related areas in layer 2/3 rat primary somatosensory cortex (S1) contain a pinwheel map of whisker motion directions. Because this map is reminiscent of topographic organization for visual direction in primary visual cortex (V1) of higher mammals, we asked whether the S1 pinwheels could be explained by an input-driven developmental process as is often suggested for V1. We developed a computational model to capture how whisker stimuli are conveyed to supragranular S1, and simulate lateral cortical interactions using an established self-organizing algorithm. Inputs to the model each represent the deflection of a subset of 25 whiskers as they are contacted by a moving stimulus object. The subset of deflected whiskers corresponds with the shape of the stimulus, and the deflection direction corresponds with the movement direction of the stimulus. If these two features of the inputs are correlated during the training of the model, a somatotopically aligned map of direction emerges for each whisker in S1. Predictions of the model that are immediately testable include (1) that somatotopic pinwheel maps of whisker direction exist in adult layer 2/3 barrel cortex for every large whisker on the rat's face, even peripheral whiskers; and (2) in the adult, neurons with similar directional tuning are interconnected by a network of horizontal connections, spanning distances of many whisker representations. We also propose specific experiments for testing the predictions of the model by manipulating patterns of whisker inputs experienced during early development. The results suggest that similar intracortical mechanisms guide the development of primate V1 and rat S1

    Cortical Maps

    Get PDF
    In this article, we review functional organization in sensory cortical regions-how the cortex represents the world. We consider four interrelated aspects of cortical organization: (1) the set of receptive fields of individual cortical sensory neurons, (2) how lateral interaction between cortical neurons reflects the similarity of their receptive fields, (3) the spatial distribution of receptive-field properties across the horizontal extent of the cortical tissue, and (4) how the spatial distributions of different receptive-field properties interact with one another. We show how these data are generally well explained by the theory of input-driven self-organization, with a family of computational models of cortical maps offering a parsimonious account for a wide range of map-related phenomena. We then discuss important challenges to this explanation, with respect to the maps present at birth, maps present under activity blockade, the limits of adult plasticity, and the lack of some maps in rodents. Because there is not at present another credible general theory for cortical map development, we conclude by proposing key experiments to help uncover other mechanisms that might also be operating during map development

    Binary-Induced Gravitational Collapse: A Trivial Example

    Get PDF
    We present a simple model illustrating how a highly relativistic, compact object which is stable in isolation can be driven dynamically unstable by the tidal field of a binary companion. Our compact object consists of a test-particle in a relativistic orbit about a black hole; the binary companion is a distant point mass. Our example is presented in light of mounting theoretical opposition to the possibility that sufficiently massive, binary neutron stars inspiraling from large distance can collapse to form black holes prior to merger. Our strong-field model suggests that first order post-Newtonian treatments of binaries, and stability analyses of binary equilibria based on orbit-averaged, mean gravitational fields, may not be adequate to rule out this possibility.Comment: 7 pages, 5 figures, RevTeX, to appear in Phys. Rev. D, Jan 15 199

    Low-cost automated vectors and modular environmental sensors for plant phenotyping

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. High-throughput plant phenotyping in controlled environments (growth chambers and glasshouses) is often delivered via large, expensive installations, leading to limited access and the increased relevance of “affordable phenotyping” solutions. We present two robot vectors for automated plant phenotyping under controlled conditions. Using 3D-printed components and readily-available hardware and electronic components, these designs are inexpensive, flexible and easily modified to multiple tasks. We present a design for a thermal imaging robot for high-precision time-lapse imaging of canopies and a Plate Imager for high-throughput phenotyping of roots and shoots of plants grown on media plates. Phenotyping in controlled conditions requires multi-position spatial and temporal monitoring of environmental conditions. We also present a low-cost sensor platform for environmental monitoring based on inexpensive sensors, microcontrollers and internet-of-things (IoT) protocols
    corecore