30 research outputs found
Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016
The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030
Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI).
METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate.
FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally.
INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support.
FUNDING: Bill & Melinda Gates Foundation
Klein Links Versus Torus Links
We will examine the relationship between Klein links and Torus links, using both diagrammatic techniques and link invariants. We begin with definitions of these links. Next, we determine the types of components in a Klein link. Finally, we look at which Klein links are torus links and which are not
Recommended from our members
Annual Mean Surface Heat Fluxes in the Tropical Pacific Ocean
The four components of the long-term annual mean net surface heating of the tropical Pacific Ocean between 30°N and 40°S are calculated and portrayed. These flux elements were derived by using the bulk formulas and about 5 million marine weather reports for the years 1957–76. In addition to illustrating the mean solar, latent heat, infrared radiation and sensible heat fluxes, annual mean values of the atmospheric variables which contribute to those fluxes also are illustrated. A simple error analysis is carried out from which it is concluded that the 95% confidence bands for solar heating, latent heat loss and net oceanic heating are ±29, ±39 and ±49 W m⁻², from the respective mean values. The validity of the results for the net heating is partially tested by comparing the horizontal heat transports required by the pattern of heating with independent estimates of those dynamical transports
QuikSCAT Climatological Data Record: Land Contamination Flagging and Correction
We develop, utilize, and validate techniques to produce a global data set of accurate coastal ocean surface vector winds. The dataset extends as near to the coast as 5 km and includes 10 years of SeaWinds on QuikSCAT ocean scatterometer data obtained from 1999 to 2009. We demonstrate improved retrievals over other large land-locked bodies of water as well, such as the Caspian Sea and the Great lakes. To determine the coastal winds we quantify the extent of land contamination in each scatterometer backscatter measurement and to the extent possible remove that contamination. After the measurements are thus corrected we retrieve winds with the corrected measurements using a previously published algorithm which has been extensively used for JPL scatterometer wind products. The coastal processing vastly increases the number of wind vector cells near coasts. We have ten times the number of wind vectors within 10 km of coast as without coastal processing, and over twice as many at 20 km from coast. These new wind vectors are high-quality, and have zero effect on non-coastal wind vectors. The effect of residual land contamination is quantified by comparing to buoys at varying distance from the coast and comparing coastal wind vector cells to oceanward neighbors. We show that the non-coastal QuikSCAT processing has very few good wind vectors nearer to the coast than about 22.5 km. In comparison to buoys, and oceanward neighbors, we find a small increase in speed errors of these new coastal wind vectors versus the performance of non-coastal QuikSCAT at 22.5 km, indicating the high-quality of these new coastal wind vectors. A quality control scheme is employed that flags regions where the coastal wind retrieval is poor due to the assumptions inherent in the technique being locally invalid. The coastal winds retrieved in this manner have been publicly distributed to the oceanography community and utilized in other published works
Surgery versus intra-arterial therapy for neuroendocrine liver metastasis: a multicenter international analysis
Management of patients with neuroendocrine liver metastasis (NELM) remains controversial. We sought to examine the relative efficacy of surgical management versus intra-arterial therapy (IAT) for NELM and determine factors predictive of survival