260 research outputs found
Coupling Nanowire Chemiresistors with MEMS Microhotplate Gas Sensing Platforms
Recent advances in nanotechnology have yielded materials and structures that offer great potential for improving the sensitivity, selectivity, stability, and speed of next-generation chemical gas sensors. To fabricate practical devices, the “bottom-up” approach of producing nanoscale sensing elements must be integrated with the “top-down” methodology currently dominating microtechnology. In this letter, the authors illustrate this approach by coupling a single-crystal SnO2 nanowire sensing element with a microhotplate gas sensor platform. The sensing results obtained using this prototype sensor demonstrate encouraging performance aspects including reduced operating temperature, reduced power consumption, good stability, and enhanced sensitivity
Reconstructing phase diagrams from local measurements via Gaussian processes: mapping the temperature-composition space to confidence
We show the ability to map the phase diagram of a relaxor-ferroelectric system as a function of temperature and composition through local hysteresis curve acquisition, with the voltage spectroscopy data being used as a proxy for the (unknown) microscopic state or thermodynamic parameters of materials. Given the discrete nature of the measurement points, we use Gaussian processes to reconstruct hysteresis loops in temperature and voltage space, and compare the results with the raw data and bulk dielectric spectroscopy measurements. The results indicate that the surface transition temperature is similar for all but one composition with respect to the bulk. Through clustering algorithms, we recreate the main features of the bulk diagram, and provide statistical confidence estimates for the reconstructed phase transition temperatures. We validate the method by using Gaussian processes to predict hysteresis loops for a given temperature for a composition unseen by the algorithm, and compare with measurements. These techniques can be used to map phase diagrams from functional materials in an automated fashion, and provide a method for uncertainty quantification and model selection
Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption
The development of molecular nanostructures plays a major role in emerging
organic electronic applications, as it leads to improved performance and is
compatible with our increasing need for miniaturisation. In particular,
nanowires have been obtained from solution or vapour phase and have displayed
high conductivity, or large interfacial areas in solar cells. In all cases
however, the crystal structure remains as in films or bulk, and the
exploitation of wires requires extensive post-growth manipulation as their
orientations are random. Here we report copper phthalocyanine (CuPc) nanowires
with diameters of 10-100 nm, high directionality and unprecedented aspect
ratios. We demonstrate that they adopt a new crystal phase, designated
eta-CuPc, where the molecules stack along the long axis. The resulting high
electronic overlap along the centimetre length stacks achieved in our wires
mediates antiferromagnetic couplings and broadens the optical absorption
spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine
nanowires opens new possibilities for applications of these simple molecules
Effect of water adsorption on conductivity in epitaxial Sm0.1Ce0.9O2-δ thin film for micro solid oxide fuel cells applications
Water adsorption, splitting, and proton liberation were investigated on Sm0.1Ce0.9O2-δ thin films by scanning probe microscopy. An irreversible volume expansion was observed by applying a positive bias with increased temperature. The volume expansion is also linearly dependent on the relative humidity. A reversible water adsorption process and its effect on the conductivity were also investigated by electrochemical strain microscopy and first order reversal curve under a number of experiment conditions. The presence of a Ce3+ along with OH groups, detected by hard x-ray photoemission spectroscopy established a clear correlation between the water incorporation and the valence state of C
- …