77 research outputs found

    Amphibians and plant-protection products: what research and action is needed?

    Get PDF
    Background: The majority of Swiss amphibians are threatened. There is a range of factors which have been discussed as possible causes for their decline, including plant protection products (PPPs). Results: The influence of PPPs on amphibian populations has not yet been studied to any great extent, neither for active ingredients nor for the wetting agents, breakdown products or tank mixtures. A further topic of discussion was how to better protect amphibians by reducing their exposure to PPPs in agricultural fields. Conclusion: Experts at a workshop concluded that further research is needed

    Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority

    Get PDF
    Current approaches to risk assessment in bees do not take into account co-exposures from multiple stressors. The European Food Safety Authority (EFSA) is deploying resources and efforts to move towards a holistic risk assessment approach of multiple stressors in bees. This paper describes the general principles of pesticide risk assessment in bees, including recent developments at EFSA dealing with risk assessment of single and multiple pesticide residues and biological hazards. The EFSA Guidance Document on the risk assessment of plant protection products in bees highlights the need for the inclusion of an uncertainty analysis, other routes of exposures and multiple stressors such as chemical mixtures and biological agents. The EFSA risk assessment on the survival, spread and establishment of the small hive beetle, Aethina tumida, an invasive alien species, is provided with potential insights for other bee pests such as the Asian hornet, Vespa velutina. Furthermore, data gaps are identified at each step of the risk assessment, and recommendations are made for future research that could be supported under the framework of Horizon 2020. Finally, the recent work conducted at EFSA is presented, under the overarching MUST-B project ("EU efforts towards the development of a holistic approach for the risk assessment on MUltiple STressors in Bees") comprising a toolbox for harmonised data collection under field conditions and a mechanistic model to assess effects from pesticides and other stressors such as biological agents and beekeeping management practices, at the colony level and in a spatially complex landscape. Future perspectives at EFSA include the development of a data model to collate high quality data to calibrate and validate the model to be used as a regulatory tool. Finally, the evidence collected within the framework of MUST-B will support EFSA's activities on the development of a holistic approach to the risk assessment of multiple stressors in bees. In conclusion, EFSA calls for collaborative action at the EU level to establish a common and open access database to serve multiple purposes and different stakeholders

    On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective

    Get PDF
    Despite growing attention, antibiotics (such as streptomycin, oxytetracycline or kasugamycin) are still used worldwide for the control of major bacterial plant diseases. This raises concerns on their potential, yet unknown impact on antibiotic and multidrug resistances and the spread of their genetic determinants among bacterial pathogens. Antibiotic resistance genes (ARGs) have been identified in plant pathogenic bacteria (PPB), with streptomycin resistance genes being the most commonly reported. Therefore, the contribution of mobile genetic elements (MGEs) to their spread among PPB, as well as their ability to transfer to other bacteria, need to be further explored. The only well-documented example of ARGs vector in PPB, Tn5393 and its highly similar variants (carrying streptomycin resistance genes), is concerning because of its presence outside PPB, in Salmonella enterica and Klebsiella pneumoniae, two major human pathogens. Although its structure among PPB is still relatively simple, in human- and animal-associated bacteria, Tn5393 has evolved into complex associations with other MGEs and ARGs. This review sheds light on ARGs and MGEs associated with PPB, but also investigates the potential role of antibiotic use in resistance selection in plant-associated bacteria

    Assessment of genetically modified soybean MON 87701 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐021)

    Full text link
    Following the submission of application EFSA-GMO-RX-021 under Regulation (EC) No 1829/2003 from Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant genetically modified soybean MON 87701, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the event in soybean MON 87701 considered for renewal is identical to the sequences of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-021 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on soybean MON 87701

    Assessment of genetically modified soybean MON 87701 × MON 89788 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐022)

    Full text link
    Following the submission of application EFSA-GMO-RX-022 under Regulation (EC) No 1829/2003 from Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant and herbicide-tolerant genetically modified soybean MON 87701 × MON 89788, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in soybean MON 87701 × MON 89788 considered for renewal are identical to the sequences of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-022 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on soybean MON 87701 × MON 89788

    Pest categorisation of Exomala orientalis

    Get PDF
    The EFSA Panel on Plant Health performed a pest categorisation of Exomala orientalis (Coleoptera: Rutelidae) (Oriental beetle) for the EU. Larvae feed on the roots of a variety of hosts including most grasses and many vegetable crops. Maize, pineapples, sugarcane are among the main host plants. Larvae are particularly damaging to turfgrass and golf courses. The adults feed on flowers and other soft plant tissues (e.g. Alcea rosea, Dahlia, Iris, Phlox and Rosa). Eggs are laid in the soil. Larvae feed on host roots and overwinter in the soil. Adults emerge from pupae in the soil in May-June and are present for about 2 months. E. orientalis usually completes its life cycle in 1 year although individuals can spend two winters as larvae. Commission Implementing Regulation (EU) 2019/2072 (Annex IIA) regulates E. orientalis. The legislation also regulates the import of soil attached to plants for planting from third countries; therefore, entry of E. orientalis eggs, larvae and pupae is prevented. E. orientalis is native to Japan or the Philippine islands. It is also found in East Asia and India, Hawaii and northeastern USA. It is assumed to have reached USA via infested nursery stock. Plants for planting (excluding seeds) and cut flowers provide potential pathways for entry into the EU. E. orientalis has been intercepted only once in the EU, on Ilex crenata bonsai. Climatic conditions and the availability of host plants provide conditions to support establishment in the EU. Impacts on maize, grassland and turfgrass would be possible. There is uncertainty on the extent of the impact on host plants which are widely commercially grown (e.g. maize) Phytosanitary measures are available to reduce the likelihood of entry. E. orientalis satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest. Of the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union regulated non-quarantine pest, E. orientalis does not meet the criterion of occurring in the EU

    Assessment of genetically modified cotton 281‐24‐236 × 3006‐210‐23 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐019)

    Get PDF
    Following the submission of application EFSA-GMO-RX-019 under Regulation (EC) No 1829/2003 from Corteva Agriscience LLC represented by Corteva Agriscience Belgium B.V., the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect resistant genetically modified cotton 281-24-236 × 3006-210-23, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. The GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-019 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on cotton 281-24-236 × 3006-210-23

    Pest categorisation of Haplaxius crudus

    Get PDF
    The EFSA Panel on Plant Health performed a pest categorisation of the planthopper Haplaxius crudus (Hemiptera: Cixiidae) for the EU. This species occurs from south-eastern USA to Northern Brazil and on many Caribbean islands. Adults oviposit on grasses, mostly Poaceae and Cyperaceae in the vicinity of palms (Arecaceae). The pest can also be found on plants of the families Arecaceae, Heliconiaceae, Pandanaceae and Verbenaceae. Preimaginal development takes place on the roots of grasses, where nymphs feed. Upon emergence, adults move to palms for feeding and return to grasses for oviposition. H. crudus is regulated in Annex IIA of Commission Implementing Regulation 2019/2072 as Myndus crudus, a junior synonym. This species is a competent vector of Candidatus Phytoplasma palmae, the causal agent of coconut lethal yellowing, a disease also regulated in Annex IIA of the same regulation. Within this regulation, potential entry pathways for H. crudus, such as Arecaceae and Poaceae plants for planting with foliage and soil/growing medium, and soil/growing media by themselves can be considered as closed. However, plants for planting of the families Cyperaceae, Heliconiaceae, Pandanaceae and Verbenaceae are not specifically regulated. Should H. crudus arrive in the EU, climatic conditions and availability of susceptible hosts in a small area in southern EU (e.g. eastern Cyprus and south-western Spain) may provide conditions for limited establishment, and further spread to neighbouring areas in the Mediterranean basin during summer months. Economic impact is anticipated only if Candidatus Phytoplasma palmae is also introduced into the EU. Phytosanitary measures are available to reduce the likelihood of entry. H. crudus satisfies the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest. This species does not meet the criteria of being present in the EU and plants for planting being the main pathway for spread for it to be regarded as a potential non-quarantine pest

    Assessment of genetically modified soybean 40‐3‐2 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐023)

    Full text link
    Following the submission of application EFSA-GMO-RX-023 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV on behalf of Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant genetically modified soybean 40-3-2, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in soybean 40-3-2 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-023 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on soybean 40-3-2
    • 

    corecore