56 research outputs found
Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer.
Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-β receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion
A comparative study of the fecal microbiota of gray seal pups and yearlings ‐ a marine mammal sentinel species
Gray seals (Halichoerus grypus) can act as sentinel species reflecting the condition of the environment they inhabit. Our previous research identified strains of pathogenic Campylobacter and Salmonella, originating from both human and agricultural animal hosts, on rectal swabs from live gray seal (H. grypus) pups and yearlings on the Isle of May, Scotland, UK. We examined rectal swabs from the same pup (n = 90) and yearling (n = 19) gray seals to gain further understanding into the effects of age-related changes (pup vs. yearling) and three different natal terrestrial habitats on seal pup fecal microbiota. DNA was extracted from a subset of rectal swabs (pups n = 23, yearlings n = 9) using an optimized procedure, and the V4 region of the 16S ribosomal RNA gene was sequenced to identify each individual's microbiota. Diversity in pup samples was lower (3.92 ± 0.19) than yearlings (4.66 ± 0.39) although not significant at the p = 0.05 level (p = 0.062) but differences in the composition of the microbiota were (p
Robust, reversible gene knockdown using a single lentiviral short hairpin RNA vector
Manipulation of gene expression is an invaluable tool to study gene function in vitro and in vivo. The application of small inhibitory RNAs to knock down gene expression provides a relatively simple, elegant, but transient approach to study gene function in many cell types as well as in whole animals. Short hairpin structures (shRNAs) are a logical advance as they can be expressed continuously and are hence suitable for stable gene knockdown. Drug-inducible systems have now been developed; however, application of the technology has been hampered by persistent problems with low or transient expression, leakiness or poor inducibility of the short hairpin, and lack of reversibility. We have developed a robust, versatile, single lentiviral vector tool that delivers tightly regulated, fully reversible, doxycycline-responsive knockdown of target genes (FOXP3 and MYB), using single short hairpin RNAs. To demonstrate the capabilities of the vector we targeted FOXP3 because it plays a critical role in the development and function of regulatory T cells. We also targeted MYB because of its essential role in hematopoiesis and implication in breast cancer progression. The versatility of this vector is hence demonstrated by knockdown of distinct genes in two biologically separate systems.Cheryl Y. Brown, Timothy Sadlon, Tessa Gargett, Elizabeth Melville, Rui Zhang, Yvette Drabsch, Michael Ling, Craig A. Strathdee, Thomas J. Gonda, and Simon C. Barr
Telomerase inhibition is an effective therapeutic strategy in TERT promoter mutant-glioblastoma models with low tumor volume
Background
Glioblastoma is one of the most lethal forms of cancer, with 5-year survival rates of only 6%. Glioblastoma-targeted therapeutics have been challenging to develop due to significant inter- and intra-tumoral heterogeneity. Telomerase reverse transcriptase gene (TERT) promoter mutations are the most common known clonal oncogenic mutations in glioblastoma. Telomerase is therefore considered to be a promising therapeutic target against this tumor. However, an important limitation of this strategy is that cell death does not occur immediately after telomerase ablation, but rather after several cell divisions required to reach critically short telomeres. We, therefore, hypothesize that telomerase inhibition would only be effective in glioblastomas with low tumor burden.
Methods
We used CRISPR interference to knock down TERT expression in TERT promoter-mutant glioblastoma cell lines and patient-derived models. We then measured viability using serial proliferation assays. We also assessed for features of telomere crisis by measuring telomere length and chromatin bridge formation. Finally, we used a doxycycline-inducible CRISPR interference system to knock down TERT expression in vivo early and late in tumor development.
Results
Upon TERT inactivation, glioblastoma cells lose their proliferative ability over time and exhibit telomere shortening and chromatin bridge formation. In vivo, survival is only prolonged when TERT knockdown is induced shortly after tumor implantation, but not when the tumor burden is high.
Conclusions
Our results support the idea that telomerase inhibition would be most effective at treating glioblastomas with low tumor burden, for example in the adjuvant setting after surgical debulking and chemoradiation
BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration
BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (Pten BRF1 ) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In Pten BRF1 tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis
An Enhanced Packaging System for Helper-Dependent Herpes Simplex Virus Vectors
ABSTRACT
Helper-dependent herpes simplex virus (HSV) vectors (amplicons) show considerable promise to provide for long-term transduced-gene expression in most cell types. The current packaging system of choice for these vectors involves cotransfection with a set of five overlapping cosmids that encode the full HSV type 1 (HSV-1) helper virus genome from which the packaging (
pac
) elements have been deleted. Although both the helper virus and the HSV amplicon can replicate, only the latter is packaged into infectious viral particles. Since the titers obtained are too low for practical application, an enhanced second-generation packaging system was developed by modifying both the helper virus and the HSV amplicon vector. The helper virus was reverse engineered by using the original five cosmids to generate a single HSV-bacterial artificial chromosome (BAC) clone in
Escherichia coli
from which the
pac
elements were deleted to generate a replication-proficient but packaging-defective HSV-1 genome. The HSV amplicon was modified to contain the simian virus 40 origin of replication, which acts as an HSV-independent replicon to provide for the replicative expansion of the vector. The HSV amplicon is packaged into infectious particles by cotransfection with the HSV-BAC helper virus into the 293T cell line, and the resulting cell lysate is free of detectable helper virus contamination. The combination of both modifications to the original packaging system affords an eightfold increase in the packaged-vector yield.
</jats:p
Identification of epidemiologic markers for Neisseria meningitidis using difference analysis
- …
