58 research outputs found

    Analytical methods for gravity-assist tour design

    Get PDF
    This dissertation develops analytical methods for the design of gravity-assist space- craft trajectories. Such trajectories are commonly employed by planetary science missions to reach Mercury or the Outer Planets. They may also be used at the Outer Planets for the design of science tours with multiple flybys of those planets’ moons. Recent work has also shown applicability to new missions concepts such as NASA’s Asteroid Redirect Mission. This work is based in the theory of patched conics. This document applies rigor to the concept of pumping (i.e. using gravity assists to change orbital energy) and cranking (i.e. using gravity assists to change inclination) to develop several analytic relations with pump and crank angles. In addition, transformations are developed between pump angle, crank angle, and v-infinity magnitude to classical orbit elements. These transformations are then used to describe the limits on orbits achievable via gravity assists of a planet or moon. This is then extended to develop analytic relations for all possible ballistic gravity-assist transfers and one type of propulsive transfer, v-infinity leveraging transfers. The results in this dissertation complement existing numerical methods for the design of these trajectories by providing methods that can guide numerical searches to find promising trajectories and even, in some cases, replace numerical searches altogether. In addition, results from new techniques presented in this dissertation such as Tisserand Graphs, the V-Infinity Globe, and Non-Tangent V-Infinty Leveraging provide additional insight into the structure of the gravity-assist trajectory design problem

    Magnetour: Surfing Planetary Systems on Electromagnetic and Multi-Body Gravity Fields

    Get PDF
    In this NIAC Phase One study, we propose a new mission concept, named Magnetour, to facilitate the exploration of outer planet systems and address both power and propulsion challenges. Our approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, with no propellant required. Our approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, with no propellant nor onboard power source required. To achieve this free-lunch _Grand Tour', we exploit the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare tether for power and propulsion. The main objective of the study is to develop this conceptually novel mission architecture, explore its design space, and investigate its feasibility and applicability to enhance the exploration of planetary systems within a 10-year timeframe. Propellantless propulsion technology offers enormous potential to transform the way NASA conducts outer planet missions. We hope to demonstrate that our free-lunch tour concept can replace heavy, costly, traditional chemical-based missions and can open up a new variety of trajectories around outer planets. Leveraging the powerful magnetic and multi-body gravity fields of planetary systems to travel freely among planetary moons would allow for long-term missions and provide unique scientific capabilities and flagship-class science for a fraction of the mass and cost of traditional concepts. New mission design techniques are needed to fully exploit the potential of this new concept.This final report contains the results and findings of the Phase One study, and is organized as follows. First, an overview of the Magnetour mission concept is presented. Then, the research methodology adopted for this Phase One study is described, followed by a brief outline of the main findings and their correspondence with the original Phase One task plan. Next, an overview of the environment of outer planets is provided, including magnetosphere, radiation belt and planetary moons. Then performance of electrodynamic tethers is assessed, as well as other electromagnetic systems. A method to exploit multi-body dynamics is given next. These analyses allow us to carry out a Jovian mission design to gain insight in the benefits of Magnetour. In addition, a spacecraft configuration is presented that fully incorporates the tether in the design. Finally technology roadmap considerations are discussed

    Synergies of Robotic Asteroid Redirection Technologies and Human Space Exploration

    Get PDF
    This paper summarizes the results of a 2014 KISS workshop that identified a wide variety of ways that the technologies (and their near-term derivatives) developed for the proposed Asteroid Redirect Mission (ARM) would beneficially impact the Nation’s space interests including: human missions to Mars and its moons, planetary defense, orbital debris removal, robotic deep-space science missions, commercial communication satellites, and commercial asteroid resource utilization missions. This wide applicability of asteroid retrieval technology is, in many ways, is just as surprising as was the initial finding about the feasibility of ARM. The current Asteroid Redirect Mission concept consists of two major parts: the development of an advanced Solar Electric Propulsion (SEP) capability and the retrieval of a near-Earth asteroid. The improvement in SEP technology required by ARM provides an extensible path to support human missions to Mars, is applicable to all planetary defense techniques, could reduce the time required for the LEO-to-GEO transfer of large commercial or military satellites, would enable new deep space robotic science missions, and could enable affordable removal of large orbital debris objects. The asteroid retrieval part of ARM would greatly improve the understanding of the structure of rubble-pile asteroids necessary to evaluate the effectiveness of primary asteroid deflection techniques, demonstrate at least one secondary asteroid deflection technique, greatly accelerate the use of material resources obtained in space to further space exploration and exploitation, and further planetary science

    Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    Get PDF
    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts

    Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission

    Get PDF
    The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission

    The Saturn Ring Skimmer Mission Concept: The next step to explore Saturn's rings, atmosphere, interior, and inner magnetosphere

    Get PDF
    The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturn's rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturn's rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the ring's atmosphere, Saturn's inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planet's visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planet's extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program.Comment: White paper submitted to the Planetary Science and Astrobiology Decadal Survey (submission #420

    The Saturn Ring Skimmer Mission Concept: The next step to explore Saturn's rings, atmosphere, interior and inner magnetosphere

    Get PDF
    The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturn's rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturn's rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the ring's atmosphere, Saturn's inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planet's visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planet's extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program
    • …
    corecore