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ABSTRACT

Strange, Nathan J. Ph.D., Purdue University, August 2016. Analytical Methods for
Gravity-Assist Tour Design. Major Professor: James M. Longuski.

This dissertation develops analytical methods for the design of gravity-assist space-

craft trajectories. Such trajectories are commonly employed by planetary science

missions to reach Mercury or the Outer Planets. They may also be used at the Outer

Planets for the design of science tours with multiple flybys of those planets’ moons.

Recent work has also shown applicability to new missions concepts such as NASA’s

Asteroid Redirect Mission.

This work is based in the theory of patched conics. This document applies rigor

to the concept of pumping (i.e. using gravity assists to change orbital energy) and

cranking (i.e. using gravity assists to change inclination) to develop several analytic

relations with pump and crank angles. In addition, transformations are developed

between pump angle, crank angle, and v-infinity magnitude to classical orbit elements.

These transformations are then used to describe the the limits on orbits achievable

via gravity assists of a planet or moon. This is then extended to develop analytic

relations for all possible ballistic gravity-assist transfers and one type of propulsive

transfer, v-infinity leveraging transfers.

The results in this dissertation complement existing numerical methods for the

design of these trajectories by providing methods that can guide numerical searches

to find promising trajectories and even, in some cases, replace numerical searches

altogether. In addition, results from new techniques presented in this dissertation such

as Tisserand Graphs, the V-Infinity Globe, and Non-Tangent V-Infinty Leveraging

provide additional insight into the structure of the gravity-assist trajectory design

problem.
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CHAPTER 1. INTRODUCTION

The technique of gravity-assists has been employed with great success in missions

such as Galileo, Cassini, Dawn, and the Voyagers. Since Mariner 10 flew the first

gravity-assist tour between two planets, improvements to computer technology have

reduced the time needed to find trajectories, and this has enabled ever more complex

designs. However, each new mission concept raises the bar for new science in future

missions, and these new missions often demand more complex designs than can be

enable by increased computer performance alone.

Gravity-assist trajectories are typically found using time-consuming, broad nu-

merical searches across the billions to trillions of combinations of gravity-assist flybys

that could constitute a gravity-assist tour. However, due to the numerical nature of

these searches, it is still all too easy for a search to step over a promising trajectory.

Because of this, a trajectory analyst is never really sure if a given mission’s objective

cannot be achieved or if the search just missed the solution, and, consequently, it is

often unclear when a mission concept being considered is actually infeasible or just

one more all-nighter away from working.

The analytical gravity-assist design techniques in this dissertation o↵er new tests

of the feasibility or infeasibility of a given trajectory concept. These techniques can

also be used to guide numerical techniques to find the promising trajectories. Such

methods may allow trajectory analysts to both work more e�ciently and produce

better designs.

Several techniques from this research have been applied with great success in the

design of both Cassini extended missions, the Europa Orbiter and Europa Clipper

studies, the Titan Saturn System Mission (TSSM) study, the Enceladus Life Finder

(ELF) mission concept, and the identification of candidate asteroids for the Asteroid

Redirect Mission concept.
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1.1 Approach and Terminology

Trajectory design for early planetary missions relied heavily on analytical methods

and approximations as the computer technology in the 1960s and 1970s made high-

fidelity numerical simulations cumbersome and broad searches infeasible. As com-

puter technology advanced, trajectory designers began adding higher fidelity force

models earlier into the design process. In the 1990s, computer technology enabled

a transition from just accounting for complex force models in numerical simulations

to the ability to exploit those models to improve the mission design. Missions such

as Genesis and Dawn would not have been possible without this improvement in

computer capability and also the associated improvements to numerical methods for

trajectory design.

Today, we no longer need to rely on analytical methods to fit a problem within the

capabilities of our computers. Full force model equations of motion for a spacecraft

can be readily integrated with even the most basic modern computer. Therefore,

instead of using analytical methods to replace high fidelity simulations, they are most

useful in guiding these simulations and in helping to give one insight into a trajectory

design problem.

In this dissertation, the first goal in making simplifying assumptions will be to

develop methods independent of body ephemerides and any particular epoch wherever

possible. Next, the focus will be to make the methods independent of the orbit

orientation where possible. To help meet both of these goals, we may assume that

the gravity-assist bodies used in a tour are in circular orbits and mutually coplanar.

All of the major planets are in roughly coplanar orbits, and every planet except

Mercury is in an approximately circular orbit. All of the planetary moons larger than

Saturn’s Hyperion (average diameter of 270 km) are in nearly circular orbits, and,

with the exception Saturn’s Iapetus, all moons larger than Neptune’s Nereid (average

diameter 340 km) are in mutually coplanar orbits.
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A close encounter of a planet or moon that modifies a spacecraft trajectory will

be referred to as a gravity assist. The planet or moon in this flyby will be called a

gravity-assist body. The Sun or planet that the gravity-assist body orbits will be called

the central body. A trajectory that employs multiple gravity assists is a gravity-assist

tour.

1.2 Historical Background

The theoretical basis for gravity assists and the method of patched conics had its

genesis is the work of François Félix Tisserand in 1889 [1–3] when he was studying

comets that were passing near to Jupiter. Tisserand had planned to study binary

stars, but his new telescope had a defective mount and couldn’t be used as he had

originally planned. But, fortunately for future astrodynamicists, the mount was stable

enough for observations of Jupiter, Saturn, and comets. This led him down the path

to discovering an approximation of the Jacobi integral that he used to prove some

thought-to-be-newly-discovered comets were actually known comets whose orbits had

been perturbed by a Jupiter flyby. This quantity is now called Tisserand’s Parameter

and was key to the early development of gravity-assist spacecraft trajectories [2].

In the early 1960s, Kra↵t Ehricke [4] and Michael Minovitch, [5] began looking

at the concept of using planetary gravity assist for spacecraft trajectories. Although

there are earlier examples of the idea of the gravity assist for spacecraft trajectories

dating back to the early 1900s [2], Ehricke and Minovitch were the first to introduce

the idea to NASA. Later, Gary Flandro [6] was able to use these concepts to design

the “Grand Tour” of the Outer Planets that was later flown by the two Voyager

spacecraft.

In the 1970s, researchers at JPL began to apply gravity-assist techniques to design

tours of planetary moon systems. In 1973, Beckman [7] coined the term orbit pumping

for using flybys to change orbit energy and orbit cranking for using flybys to change

inclination. A seminal paper by Upho↵ et al. [8] presented several innovative new
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techniques that were developed for what would later become the Galileo mission. The

later development of the Cassini-Huygens mission to Saturn in the 1990s, provided

additional insight into tour design techniques [9, 10].

In the 1990s, new capability for gravity-assist trajectory design was developed at

Purdue. Most notably for the research in this dissertation: Williams and Longuski

[11–13] investigated using broad numerical searches with the Automated STOUR

tour design software for automated tour design, and Sims, Longuski, and Staugler

[14] introduced additional theory to describe maneuvers that change flyby v-infinity

in gravity-assist tours. This technique is called V-Infinity Leveraging (a term first

introduced by Longuski) and is explored in Chapter 4.

1.3 New Work in This Dissertation

This section provides an overview of this document highlighting new results.

Chapter 2: V-Infinity Relations

This chapter builds upon the work of Upho↵ et al. [8] to more formally define

pump and crank angles. This then allows relations in § 2.1.4 and § 2.3 for transform-

ing between pump/crank and classical orbit elements. Section 2.5.4 then provides

relations that describe how flybys can cause changes in pump and crank.

The v-infinity magnitude relations in this chapter were first presented in a confer-

ence paper by Strange and Sims in 2001, [15] and the pump and crank angle definition

and relations (including § 2.1.4, § 2.3, and § 2.5.4) were first presented by Strange at

a JPL seminar [16] in 2006.

Chapter 3: Ballistic Gravity-Assist Transfers

This chapter applies the relations from Chapter 2 to develop new relations and

techniques to describe the various ballistic gravity-assist transfers identified by Upho↵
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et al. [8] The formulae for finding non-resonant and backflip same-body transfers in

§ 3.1.2 and § 3.1.3 were first presented in conference paper by Strange and Sims

[15] in 2001. Equation 3.23 is an especially significant result in this section, as the

relationship between v-infinity and inclination for same-body transfers had not been

previously identified, and the discovery of this relation has made it significantly easier

to numerically converge these transfers. The inclination relation for di↵erent body

backflips in § 3.2.2 is first presented in this dissertation, but derives from the vacant

node relations first presented by Strange in 2003 [17].

The graphical methods presented in this chapter are also new work from this

research e↵ort. The Tisserand Graphs in § 3.2.1 were presented in a 2002 journal

article by Strange and Longuski [18]. Although a similar method was developed

by Labunsky et al. [19] and published in a 1998 book, the Tisserand Graphs were

the first application of this kind of graphical method to the gravity-assist pathfinding

problem. This graphical method was able to find gravity-assist trajectories that could

not be found by numerical searches alone [20]. The V-infinity Globe in § 3.1.4 was

first presented in a 2007 conference paper by Strange, Russell, and Bu�ngton [21].

Although previous work had plotted contours of constant orbit period or inclination

on the v-infinity sphere, this paper was the first to relate this sphere to pump and

crank angles and to plot tour designs on the v-infinity sphere.

Chapter 4: V-Infinity Leveraging

This chapter looks at V-Infinity Leveraging Transfers (VILTs). These transfers

change a spacecraft’s v1 when a gravity assist from another body isn’t available to

do it for free. A small leveraging maneuver can translate into a change in v1 ten

or more times larger than the maneuver. As the bending provided by a flyby is a

function of the flyby v1, leveraging maneuvers provide an economical way to influence

the e�cacy of a flyby. Previous work [14, 15, 22–24] in VILTs had largely focused on

tangent leveraging, i.e. leveraging where the v1 vector is tangent to the gravity-assist
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body’s velocity vector at one end of the transfer. This chapter presents work by

Strange, Campagnola, and Russell [24,25] in 2009 that looked at non-tangent VILTs

and developed analytic expressions for finding both tangent and non-tangent VILTs.

This chapter also includes an example application of this theory to the problem of

reducing the orbit insertion �V for an Enceladus orbiter or lander mission.

Chapter 5: Asteroid Redirection

This chapter applies the theory developed in Chapters 2 and 3 to the problem

of identifying asteroids suitable for redirection into orbits more accessible by human

exploration spacecraft or onto Earth-Mars Cyclers. The methods presented in this

chapter were used to find the initial asteroid targets for the Asteroid Redirect Mission

concept during the initial 2011 study by the Keck Institute for Space Studies (KISS)

[26, 27]. This work was presented in 2014 [28] and 2015 [29] conference papers.

Chapter 6: Uranus Tour Design

This chapter addresses the problem of designing the initial inclination reduction

sequence for Uranian gravity-assist tours. For most arrival dates, missions to Uranus

will have highly inclined (60� – 80�) initial capture orbits. This high inclination causes

tours to begin with high v-infinity relative to the satellites (5 – 8 km/s), which makes

design of a gravity-assist tour with the relatively small Uranian moons di�cult. This

chapter examines using an apo-twist maneuver [30–32] on the initial capture orbit in

concert with using multiple flybys to change inclination. It then identifies the best

combination of flybys and maneuvers to reduce this inclination in a given length of

time. This work was presented in a conference paper in 2013 [33].
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CHAPTER 2. V-INFINITY RELATIONS

This chapter will develop analytic relations that will be used in subsequent chapters.

The goal in these derivations will be to choose simplifying assumptions where possible

so as to facilitate trade space exploration when designing a mission that employs

gravity assists. After these relations are used to identify the most promising regions

of the trade space, numerical methods can be used both to assess the validity of these

simplifying assumptions and to generate a high-fidelity solution with the appropriate

force model.

The starting simplification for this analysis is to model a gravity-assist trajectory

as a sequence of zero-sphere-of-influence patched conics. That is, flyby trajectories

will be modeled as two-body hyperbolic orbits of the gravity-assist body, and the

trajectories relative to the central body will be modeled as two-body Keplerian orbits

with instantaneous impulses at the flybys. Relative to the central body, the trajectory

will be assumed to go through the center of the gravity-assist body, and relative to the

gravity-assist body the trajectories will be assumed to come from and go to infinity.

When looking at the orbit elements in these two di↵erent reference frames, sub-

scripts (as described in the notation section) will be used to distinguish between

qualities taken in di↵erent reference frames. The cb subscript will describe a quality

pertinent to the central body, the ga subscript will describe a quality pertinent to the

gravity-assist body, the sc subscript will denote a quantity describing the patched-

conic approximated spacecraft orbit relative to the central body, and the fb subscript

will denote a quantity describing the patched-conic approximated spacecraft orbit

relative to the gravity-assist body.

In the patched-conic assumption, the spacecraft’s velocity relative the central

body (~vsc) before or after a flyby is given by the vector sum of the gravity-assist body
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velocity (~vga) and the spacecraft’s v-infinity (~v1) with respect to the gravity-assist

body. This sum is shown both in Eqn. 2.1 and Fig. 2.1.

~vsc = ~vga + ~v1 (2.1)

�vsc

�vga

�v1

1

�vsc

�vga

�v1

1

�vsc

�vga

�v1

1

↵

1

Figure 2.1: Gravity-assist vector diagram

The patched-conic model treats the gravity assist as an instantaneous rotation of

the ~v1 vector. A flyby cannot change the ~v1 magnitude, only its direction. This

provides an important constraint that we may understand better if we represent the

~v1 in polar coordinates with the pump (↵) and crank () angles (described below)

that describe the possible rotations of the ~v1 vector.

We may also use Fig. 2.1 to map a given ~v1 to an orbit relative to the central

body, and can then understand how a flyby may be used to change that orbit. To

understand how much change a given flyby may impart, we use the bending angle

(�) to quanitfy how much rotation may be accomplished by a single flyby. We may

then both describe constraints on the sorts of orbits relative the central body that

could be achieved from multiple flybys and design sequences of flybys to achieve any

allowable orbit transformation.

2.1 The V-Infinity Vector

Many of the relations in this chapter will derive from the ~v1 vector as expressed

in Fig. 2.1. The following section develops many of these relations and will allow us

to map a given ~v1 to the related orbit relative to the central body.
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2.1.1 Pump Angle

The ↵ angle from Fig. 2.1 is referred to as the the pump angle and describes the

energy of the spacecraft relative to the central body. We may apply the law of cosines

to Fig. 2.1 to develop the following relation between the pump angle to the velocity

magnitudes:

v2
sc = v2

1 + v2
ga + 2v1vga cos(↵) (2.2)

The pump angle is strictly positive, so Eqn. 2.2 fully defines it.

Notice, since we know vga from the ephemeris of the gravity-assist body, that vsc

is a function of v1 and ↵. Vis viva then relates vsc directly to asc (or vi, the v-infinity

with respect to the central body for a hyperbolic orbit):

v2
sc = µcb

✓
2

renc

�

1

asc

◆
(2.3)

v2
sc =

2µcb

renc

+ v2
i (2.4)

Here renc is the “radius of encounter”, the distance from the gravity-assist body to

the central body at the time of the flyby. These equations can be written in form

suggestive of canonical units (i.e., a non-dimensionalization where µcb and renc are

both one) by dividing by the square of the local circular velocity (vc):

✓
vsc

vc

◆2

= 2 �

renc

asc

(2.5)

✓
vsc

vc

◆2

= 2 +

✓
vi

vc

◆2

(2.6)
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where vc is given by:

vc =

r
µcb

renc

(2.7)

and could be set equal to one for canonical units.

This then allows us to write asc in canonical form as:

renc

asc

= 2 �

1

v2
c

⇥
v2

1 + v2
ga + 2v1vga cos(↵)

⇤
(2.8)

Since ⇡ � ↵ � 0, we may bound asc for all achievable orbits with a given v1:

2 �

1

v2
c

⇥
v2

1 + v2
ga � 2v1vga

⇤


renc

asc

 2 �

1

v2
c

⇥
v2

1 + v2
ga + 2v1vga

⇤
(2.9)

For elliptical and circular orbits, the semi-major axis is directly related to the

orbit period (for an ellipse) by Kepler’s third law:

a3
sc = µcb

✓
Tsc

2⇡

◆2

(2.10)

Which we may also re-write in canonical form using the local circular orbit period

(Tc) to:

✓
asc

renc

◆3

=

✓
Tsc

Tc

◆2

(2.11)

where Tc is given by:

Tc = 2⇡

s
r3
enc

µcb

(2.12)

and would be simply 2⇡ in canonical units. This then allows us to write:

Tsc

Tc

=

✓
2 �

1

v2
c

⇥
v2

1 + v2
ga + 2v1vga cos(↵)

⇤◆� 3
2

(2.13)
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So, if we know the v1 magnitude, the pump angle gives us the orbit period (or

vi). Since orbit period and semi-major axis are an expression of the orbit energy,

↵ is also a measure of the energy relative to the central body. This relationship

is independent of inclination (isc), i.e. ~vsc, can rotate around ~vga without changing

Fig. 2.1 or Eqn. 2.2.

The pump angle also determines whether the spacecraft’s orbital velocity is in

the same direction as the gravity-assist body’s orbit or not. The following sections

will define spacecraft orbit parameters in reference to the gravity-assist body’s orbit.

Therefore, the term prograde would denote ~vsc in the same direction as the gravity-

asist body’s orbital motion1 and retrograde the opposite direction. By inspection from

Fig. 2.1:

if prograde: vga > �v1 cos(↵) (2.14)

if retrograde: vga < �v1 cos(↵) (2.15)

When vga = v1 cos(↵) the spacecraft orbit is rectilinear and neither prograde nor

retrograde as it is headed on a straight line either away from or towards the central

body.

2.1.2 Crank Angle

In order to understand how orbit inclination is related to the direction of the ~v1,

we need to introduce the other angle from our set of spherical coordinates, crank ().

The crank angle is a measure of the rotation of the plane described by the triangle of

~vsc, ~vga, and ~v1. I.e., the crank angle is the rotation of Fig. 2.1 relative to the plane

of the gravity-assist body’s orbit. The crank angle and it’s relation to this v-infinity

triangle is illustrated in Fig. 2.2. Here we see that the pump and crank angles are

su�cient to describe the sphere of possible ~v1 directions.

1For gravity-assist tours using Neptune’s moon Triton, this definition means that a “prograde” orbit
would be retrograde with respect to Neptune’s pole.
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ĉ3



1

q̂1

q̂3

ĉ1

ĉ3



1

p̂1

p̂2

q̂1

q̂2

�ga

1

12

2.1.2 Crank Angle

In order to understand how orbit inclination is related to the direction of the ~v1,

we need to introduce the other angle from our set of spherical coordinates, crank ().

The crank angle is a measure of the rotation of the plane described by the triangle of

~vsc, ~vga, and ~v1. I.e., the crank angle is the rotation of Fig. 2.1 relative to the plane

of the gravity-assist body’s orbit. The crank angle and it’s relation to this v-infinity

triangle is illustrated in Fig. 2.2. Here we see that the pump and crank angles are

su�cient to describe the sphere of possible ~v1 directions.

~vsc

~vga

~v
1

1

~vsc

~vga

~v
1

1

~vsc

~vga

~v
1

1

↵

1



1

ga-body orbit plane

to cbq̂1

q̂3

ĉ1
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Figure 2.2.. Crank Angle FIX – neg rotation

First, let’s define a reference frame from the gravity-assist body’s orbit tied to the

direction of ~vga, the q̂i-frame2 as follows:

q̂2 = v̂ga (2.16)

q̂3 = r̂enc ⇥ v̂ga (2.17)

q̂1 = q̂2 ⇥ q̂3 (2.18)

2By the convention in the notation section, v̂
ga

is a unit vector in the direction of ~v
ga

.

Figure 2.2: v1 sphere showing crank and pump angles

First, let’s define a reference frame from the gravity-assist body’s orbit tied to the

direction of ~vga, the q̂i-frame2 as follows:

q̂3 = v̂ga (2.16)

q̂2 = v̂ga ⇥ r̂enc (2.17)

q̂1 = q̂2 ⇥ q̂3 (2.18)

Next we define the ĉi-frame which is tied to the plane of Fig. 2.1, with ĉ2 in the same

direction as q̂2:

ĉ3 = v̂ga (2.19)

ĉ2 = v̂ga ⇥ v̂sc (2.20)

ĉ1 = ĉ2 ⇥ ĉ3 (2.21)

Then, as in Fig. 2.3, we define the crank angle () as the angle from q̂1 to ĉ1. This

results in the following transformation between the q̂i and ĉi frames:

2By the convention in the notation section, v̂
ga

is a unit vector in the direction of ~v
ga

.
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ĉ3



1

q̂1

q̂3

ĉ1
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Next we define the ĉi-frame which is tied to the plane of Fig. 2.1, with ĉ2 in the same

direction as q̂2:

ĉ2 = v̂ga (2.19)

ĉ3 = v̂sc ⇥ v̂ga (2.20)

ĉ1 = ĉ2 ⇥ ĉ3 (2.21)

Then, as in Fig. 2.3, we define the crank angle () as the angle from q̂1 to ĉ1. This

results in the following transformation between the q̂i and ĉi frames:
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Figure 2.3.. q̂i $ ĉi [FLIP SENSE FOR ]

q̂1 = cos()ĉ1 � sin()ĉ3 (2.22)

q̂2 = ĉ2 (2.23)

q̂3 = sin()ĉ1 + cos()ĉ3 (2.24)

ĉ1 = cos()q̂1 + sin()q̂3 (2.25)

ĉ2 = q̂2 (2.26)

ĉ3 = � sin()q̂1 + cos()q̂3 (2.27)
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Figure 2.3: q̂i $ ĉi

q̂1 = cos()ĉ1 � sin()ĉ2 (2.22)

q̂2 = sin()ĉ1 + cos()ĉ2 (2.23)

ĉ1 = cos()q̂1 + sin()q̂2 (2.24)

ĉ2 = � sin()q̂1 + cos()q̂2 (2.25)

ĉ3 = q̂3 (2.26)

In the ĉi-frame it is straightforward to write the components of ~v1 from Fig. 2.1:

~v1 = v1 sin(↵)ĉ1 + v1 cos(↵)ĉ3 (2.27)

Which, in the q̂i-frame is then:

~v1 = v1 sin(↵) cos()q̂1 + v1 sin(↵) sin()q̂2 + v1 cos(↵)q̂3 (2.28)

To get to inclination from here, we will need to write the components of ~vsc and

then use Eqn. 2.1 to write another equation for ~v1. To that end, we need to introduce

two additional reference frames tied to the position vector at the flyby (~renc): a p̂i-
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frame in the gravity-assist body’s orbit plane, and a ŝi-frame in the spacecraft’s orbit

plane.

p̂1 = r̂enc (2.29)

p̂3 = r̂enc ⇥ v̂ga (2.30)

p̂2 = p̂3 ⇥ p̂1 (2.31)

ŝ1 = r̂enc (2.32)

ŝ3 = r̂enc ⇥ v̂sc (2.33)

ŝ2 = ŝ3 ⇥ ŝ1 (2.34)

Then, at the time of the flyby, the location of both the spacecraft and the gravity

assist body with respect to the central body can now be described as:

~renc = rencŝ1 = rencp̂1 (2.35)

and we get the following conversions between these reference frames:
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q̂2

�ga

1

p̂1

p̂2

q̂1

q̂2

�ga

1

p̂1

p̂2

q̂1

q̂2

�ga

1

p̂1

p̂2

q̂1

q̂2

�ga

1
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Figure 2.4.. p̂i $ q̂i
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ŝ2

ŝ3
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ŝ3

isc

1

p̂2

p̂3

ŝ2
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ŝ2

ŝ3
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1

Figure 2.5.. p̂i $ ŝi

p̂1 = cos(�ga)q̂1 + sin(�ga)q̂3 (2.36)

p̂2 = � sin(�ga)q̂1 + cos(�ga)q̂3 (2.37)

p̂3 = q̂2 (2.38)

q̂1 = cos(�ga)p̂1 � sin(�ga)p̂2 (2.39)

q̂3 = sin(�ga)p̂1 + cos(�ga)p̂2 (2.40)

p̂1 = ŝ1 (2.41)

p̂2 = cos(isc)ŝ2 � sin(isc)ŝ3 (2.42)

p̂3 = sin(isc)ŝ2 + cos(isc)ŝ3 (2.43)

ŝ2 = cos(isc)p̂2 + sin(isc)p̂3 (2.44)

ŝ3 = � sin(isc)p̂2 + cos(isc)p̂3 (2.45)

Figure 2.4: p̂i $ q̂i
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ŝ3

isc

1

Figure 2.5: p̂i $ ŝi

p̂1 = cos(�ga)q̂1 + sin(�ga)q̂3 (2.36)

p̂2 = � sin(�ga)q̂1 + cos(�ga)q̂3 (2.37)

p̂3 = q̂2 (2.38)

q̂1 = cos(�ga)p̂1 � sin(�ga)p̂2 (2.39)

q̂3 = sin(�ga)p̂1 + cos(�ga)p̂2 (2.40)

p̂1 = ŝ1 (2.41)

p̂2 = cos(isc)ŝ2 � sin(isc)ŝ3 (2.42)

p̂3 = sin(isc)ŝ2 + cos(isc)ŝ3 (2.43)

ŝ2 = cos(isc)p̂2 + sin(isc)p̂3 (2.44)

ŝ3 = � sin(isc)p̂2 + cos(isc)p̂3 (2.45)

Note that the above transformations have defined the inclination as the angle

between the spacecraft orbit and the plane of the gravity-assist body’s orbit. (If incli-

nation in another coordinate system is desired, additional transformations would be

needed.) In addition, although inclination is traditionally defined as a strictly positive

angle, the transformations above require inclination to allow negative values. Both of

these assumptions were not made merely to simplify the above transformations, but

because they allow useful insight into geometric restrictions on the spacecraft orbit

that will be discussed in § 2.2.1.



16

Now we write each velocity vector from Fig. 2.1 in the p̂i-frame:

~vga = vgaq̂3

= vga sin(�ga)p̂1 + vga cos(�ga)p̂2

(2.46)

~vsc = vsc sin(�sc)ŝ1 + vsc cos(�sc)ŝ2

= vsc sin(�sc)p̂1 + vsc cos(�sc) cos(isc)p̂2 + vsc cos(�sc) sin(isc)p̂3

(2.47)

We may write ~v1 in the p̂i-frame either from Eqn. 2.1:

~v1 = ~vsc � ~vga

= [vsc sin(�sc) � vga sin(�ga)]p̂1 + [vsc cos(�sc) cos(isc) � vga cos(�ga)]p̂2

+ vsc cos(�sc) sin(isc)p̂3

(2.48)

or from Eqn. 2.28:

~v1 = v1[sin(↵) cos() cos(�ga) + cos(↵) sin(�ga)]p̂1 + v1[cos(↵) cos(�ga)

� sin(↵) cos() sin(�ga)]p̂2 + v1 sin(↵) sin()p̂3

(2.49)

By combining Eqn. 2.48 and Eqn. 2.49, we get three equations from each of the

p̂i:

vsc sin(�sc) � vga sin(�ga) = v1 sin(↵) cos() cos(�ga) + v1 cos(↵) sin(�ga) (2.50)

vsc cos(�sc) cos(isc) � vga cos(�ga) =

v1 cos(↵) cos(�ga) � v1 sin(↵) cos() sin(�ga) (2.51)

vsc cos(�sc) sin(isc) = v1 sin(↵) sin() (2.52)
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From Eqn. 2.52:

sin(isc) =
v1 sin(↵) sin()

vsc cos(�sc)
(2.53)

Since pump is strictly positive, isc will have the same sign as  if the spacecraft is in

a prograde orbit (i.e. cos(�sc) positive) or the opposite sign if the orbit is retrograde.

In the case of �ga = 0, Eqn. 2.50 and Eqn. 2.51 simplify to:

vsc sin(�sc) = v1 sin(↵) cos() (2.54)

vsc cos(�sc) cos(isc) � vc = v1 cos(↵) (2.55)

From Eqn. 2.54:

sin(�sc) =
v1

vsc

sin(↵) cos() (2.56)

cos(�sc) =
1

vsc

q
v2

sc � (v1 sin(↵) cos())2 (2.57)

Plugging this into Eqn. 2.53 and combining with Eqn. 2.2 yields the following expres-

sion relating crank and inclination:

sin(isc) =
sin(↵) sin()r⇣

vc
v1

⌘2

+ 2 vc
v1

cos(↵) +
�
1 � sin2(↵) cos2()

�
(2.58)

Since 0  |isc| 

⇡
2

for prograde orbits and ⇡
2

 |isc|  ⇡ for retrograde orbits, we

know the quadrant of isc based on whether the orbit is prograde or retrograde.
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Equation 2.55 may be combined with Eqn. 2.53 to yield the following convenient

expression for converting from inclination to crank:

sin() = tan(isc)

✓
vc/v1 + cos(↵)

sin(↵)

◆
(2.59)

To resolve quadrant ambiguities above, note from Eqn. 2.54 that cos() is negative for

inbound flybys (i.e. �sc < 0) and is positive for outbound flybys. Equation 2.59 also

shows that inclination and crank have the same sign for prograde orbits and opposite

signs for retrograde orbits.

Bounds on Inclination

From Eqn. 2.53, we see that the maximum orbit inclination is achieved when

crank is ±⇡/2. Plugging that into Eqn. 2.59, we get the following constraint on the

inclinations achievable with gravity assists for a given pump angle and v1:

| tan(isc)| 

sin(↵)

vc/v1 + cos(↵)
(2.60)

Equation 2.60 is a driving design constraint in cases where a tour must achieve high

inclinations for science objectives, such as for the Cassini-Huygens mission, or where

tours must start with high inclinations, such as Uranus missions.

2.1.3 V-Infinity Magnitude

To find the v1 from the spacecraft orbit, we start with Eqn. 2.48 squared:

v2
1 = v2

sc + v2
ga � 2vscvga[sin(�sc) sin(�ga) + cos(�sc) cos(�ga) cos(isc)] (2.61)



19

Orbital angular momentum will give us �sc for use in Eqn. 2.61. We may write

the specific angular momentum by the cross product:

~hsc = ~renc ⇥ ~vsc = hscŝ3 = rencvsc cos(�sc)ŝ3 (2.62)

or from the solution to the two-body problem:

hsc =
p

µcbasc(1 � e2
sc) (2.63)

Combining Eqn. 2.62 with Eqn. 2.63 gives:

cos(�sc) =

p
µcbasc(1 � e2

sc)

rencvsc

=
vc

vsc

r
asc

renc

(1 � e2
sc) (2.64)

The sign of �sc in Eqn. 2.64 may be determined by noting whether the flyby occurs

before periapsis (i.e. inbound) or after periapsis (i.e. outbound) of the orbit relative

the central body. For inbound flybys �sc < 0 and for outbound flybys �sc > 0. When

�sc = 0 the flyby occurs at either periapsis (if asc < renc) or apoapsis (if asc > renc).

Now if we set �ga = 0 and vga = vc, we may write Eqn. 2.61 as:

✓
v1

vc

◆2

=

✓
vsc

vc

◆2

+ 1 � 2 cos(isc)

r
asc

renc

(1 � e2
sc) (2.65)

Now, if we combine with Eqn. 2.5, we get:

✓
v1

vc

◆2

= 3 �

renc

asc

� 2 cos(isc)

r
asc

renc

(1 � e2
sc) (2.66)
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2.1.4 Pump and Crank from Orbit Elements

If we assume the gravity-assist body to be in a circular orbit, Eqn. 2.66 and

Eqn. 2.5 yield v1 magnitude from asc and esc. Then we use Eqn. 2.2 and Eqn. 2.5 to

solve for ↵:

cos(↵) =
1

2


vc

v1

✓
1 �

renc

asc

◆
�

v1

vc

�
(2.67)

We then use Eqn. 2.59 for :

sin() = � tan(isc)

✓
vc/v1 + cos(↵)

sin(↵)

◆
(2.68)

Since ↵ is strictly positive, there are no quadrant ambiguities to worry about in

Eqn. 2.67. In Eqn. 2.68, �⇡/2    ⇡/2 for inbound encounters and ⇡/2    3⇡/2

for outbound.

2.2 Orbit Orientation

So far we haven’t uncovered any connection between the ~v1 and orbit orientation

as v1, ↵, and  depend only on asc, esc, and isc and not on any of the orientation

related orbit elements. To find the connections to orbit orientation we must investi-

gate the geometric constraints that arise because the gravity-assist must occur at the

intersection of the spacecraft orbit and the gravity-assist body’s orbit.

2.2.1 Node Crossings

As discussed in § 2.1.2, the isc inclination is defined as the angle between the

spacecraft orbit and the plane of the gravity-assist body’s orbit. This means that the

gravity-assist will always be on the spacecraft’s line of nodes. One node crossing will

be at the encounter with the gravity-assist body, and the other I will call the vacant
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encounter

vacant

node

line of nodes

x direction

L

Figure 2.6: Longitude of Encounter

node. By changing the ~v1 we can control this vacant node crossing to target other

flyby bodies or avoid planetary rings.

Figure 2.6 defines the longitude of encounter, Lenc, as the angle between the en-

counter node crossing and some reference direction. If we assume that the gravity-

assist body is in a ciricular orbit, then Lenc is all the information that we need of

the gravity-assist body’s position to fully determine the relationship between the

spacecraft’s orbit and its ~v1.

If the spacecraft’s longitude of the ascending node, ⌦sc, is measured with respect

to the same reference direction, the relationship between Lenc and ⌦sc is simply:

⌦sc =

8
><

>:

Lenc if enc. at asc. node

Lenc ± ⇡ if enc. at desc. node
(2.69)

In Fig. 2.2 we see that for positive values of crank, the ~vsc is rising with respect to

the gravity-assist body’s orbit, and it is falling for negative crank. Therefore positive

crank values correspond to encounters at the ascending node of the spacecraft orbit

and negative values correspond to descending node encounters.
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The argument of periapsis, as shown in Fig. 2.7, describes the orientation of the

spacecraft orbit relative to the line of nodes. Since the flyby is at the node crossing,

the true anomaly of the encounter, fenc is given by:

fenc =

8
><

>:

�!sc if enc. at asc. node

⇡ � !sc if enc. at desc. node
(2.70)

where !sc is the argument of periapsis of the spacecraft orbit.

iscwscline of 
nodes

lin
e o

f 
ap

sid
es

refe
ren

ce p
lane

Figure 2.7: Argument of Periapsis

We may then substitute fenc into the conic equation for a two-body orbit:

renc =
asc(1 � e2

sc)

1 + esc cos(fenc)
(2.71)

and then combine with Eqn. 2.70:

renc =
asc(1 � e2

sc)

1 ± esc cos(!sc)
(2.72)

and then solve for the argument of periapsis:

if at ascending node: cos(!sc) =
1

esc


asc

renc

(1 � e2
sc) � 1

�
(2.73)
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if at descending node: cos(!sc) =
1

esc


1 �

asc

renc

(1 � e2
sc)

�
(2.74)

Since fenc will be negative for an inbound flyby and positive outbound and since

cos() is also negative for inbound flybys and positive inbound, then:

sign(!sc) = sign(fenc) = sign(cos()) (2.75)

We may also solve the conic equation for the radius of the node crossing opposite

the flyby. If we do this with Eqn. 2.73 or Eqn. 2.74 and simplify, we get the following

expression for the radius of the vacant node (in canonical form):

rvac

renc

=
asc
renc

(1 � e2
sc)

2 �

asc
renc

(1 � e2
sc)

(2.76)

2.3 How to Solve for Classical Orbit Elements

We can now derive the full set of classical orbit elements from v1, ↵, and . The

following relations all assume that the gravity-assist body is in a circular orbit. First,

from Eqn. 2.8:

renc

asc

= 1 �

v1

vc

✓
v1

vc

+ 2 cos(↵)

◆
(2.77)

From Eqn. 2.58:

tan(isc) = sin()

✓
sin(↵)

vc/v1 + cos(↵)

◆
(2.78)
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Where:

if: � v1 cos(↵) < vc =) prograde =) |isc| > ⇡/2 ; sign(isc) = sign()

if: � v1 cos(↵) > vc =) retrograde =) |isc| < ⇡/2 ; sign(isc) = �sign()

if: � v1 cos(↵) = vc =) polar orbit =) |isc| = ⇡/2 ; sign(isc) = sign()

From Eqn. 2.66:

e2
sc = 1 �

renc

asc

0

B@
3 �

⇣
v1
vc

⌘2

�

renc
asc

2 cos(isc)

1

CA

2

(2.79)

From Eqn. 2.73 and Eqn. 2.74:

cos(!sc) =
sign()

esc


asc

renc

(1 � e2
sc) � 1

�
(2.80)

From Eqn. 2.71:

cos(fenc) =
1

esc


asc

renc

(1 � e2
sc) � 1

�
(2.81)

where the sign of fenc is the same as !sc:

sign(!sc) = sign(fenc) = sign(cos()) (2.82)

Then finally, from Eqn. 2.69:

⌦sc = Lenc + (1 � sign())
⇡

2
(2.83)

where Lenc is the Longitude of Encounter as defined in § 2.2.1.
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2.4 Relationship between Patched Conics and the 3-Body Problem

Equation 2.66, repeated below:

✓
v1

vc

◆2

= 3 �

renc

asc

� 2 cos(isc)

r
asc

renc

(1 � e2
sc) (2.84)

is actually a much more remarkable result than I previously let on. It is a window

into the connection between the patched-conic assumption and Circular Restricted

3-Body Problem (CR3BP). This section will illuminate the view through this window.

2.4.1 The Circular Restricted 3-Body Problem

Figure 2.8 depicts the geometry of the CR3BP. Here point C is the center of mass

of the system and ~r1 = �r1r̂ and ~r2 = r2r̂ describe the position of the bodies m1 and

m2 relative to the center of mass, where r̂ = cos(!t)⇠̂ + sin(!t)⌘̂. Both bodies are

assumed to be in a circular orbit and at a constant distance from each other. The

spacecraft, m3, is assumed to have negligible mass.

m2

m1

C

m3
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I will nondimensionalize the problem by assuming units such that r1 + r2 = 1 and

µ1+µ2 = 1 (where µ1 and µ2 are the masses m1 and m2 times Newton’s Gravitational

Constant). Since ~r1 and ~r2 are with respect to the center of mass:

m1~r1 + m2~r2 = (�m1r1 + m2r2)r̂2 = 0 = (�µ1r1 + µ2r2)r̂2 (2.85)

Noting that r2 = 1 � r1 and µ1 = 1 � µ2:

�µ1r1 + µ2r2 = (µ2 � 1)r1 + µ2(1 � r1) = 0 (2.86)

When we solve Eqn. 2.86 for r1, we get:

r1 = µ2 = ⌫ (2.87)

Here ⌫ is a parameter that describes both the relative positions and relative masses

of the two gravitating bodies.

Finally, note that because we assume the two-bodies are in a circular orbit, this

nondimensionalization yields:

! =
1

r1 + r2

r
µ1 + µ2

r1 + r2

= 1 (2.88)

2.4.2 CR3BP Lagrangian

Consider m3 in Figure 2.8. First, let’s write its position relative to m1 and m2 as

~⇢1 and ~⇢2 respectively in terms of the third body’s position with respect to the center

of mass, ~r.

~⇢1 = ~r � ~r1 = (⇠ + ⌫ cos(!t))⇠̂ + (⌘ + ⌫ sin(!t))⌘̂ + ⇣⇣̂ (2.89)

Figure 2.8: The Circular Restricted 3-Body Problem (CR3BP)

I will nondimensionalize the problem by assuming units such that r1 + r2 = 1 and

µ1+µ2 = 1 (where µ1 and µ2 are the masses m1 and m2 times Newton’s Gravitational

Constant). Since ~r1 and ~r2 are with respect to the center of mass:

m1~r1 + m2~r2 = (�m1r1 + m2r2)r̂2 = 0 = (�µ1r1 + µ2r2)r̂2 (2.85)
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Noting that r2 = 1 � r1 and µ1 = 1 � µ2:

�µ1r1 + µ2r2 = (µ2 � 1)r1 + µ2(1 � r1) = 0 (2.86)

When we solve Eqn. 2.86 for r1, we get:

r1 = µ2 = ⌫ (2.87)

Here ⌫ is a parameter that describes both the relative positions and relative masses

of the two gravitating bodies.

Finally, note that because we assume the two-bodies are in a circular orbit, this

nondimensionalization yields:

! =
1

r1 + r2

r
µ1 + µ2

r1 + r2

= 1 (2.88)

2.4.2 CR3BP Lagrangian

Consider m3 in Figure 2.8. First, let’s write its position relative to m1 and m2 as

~⇢1 and ~⇢2 respectively in terms of the third body’s position with respect to the center

of mass, ~r.

~⇢1 = ~r � ~r1 = (⇠ + ⌫ cos(!t))⇠̂ + (⌘ + ⌫ sin(!t))⌘̂ + ⇣⇣̂ (2.89)

~⇢2 = ~r � ~r2 = (⇠ + (⌫ � 1) cos(!t))⇠̂ + (⌘ + (⌫ � 1) sin(!t))⌘̂ + ⇣⇣̂ (2.90)

The magnitudes of ~⇢1 and ~⇢2 are given by:

⇢2
1 = (⇠ + ⌫ cos t)2 + (⌘ + ⌫ sin t)2 + ⇣2 (2.91)

⇢2
2 = (⇠ + (⌫ � 1) cos t)2 + (⌘ + (⌫ � 1) sin t)2 + ⇣2 (2.92)
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Let’s now define a rotating reference frame (remember r̂2 is from C to m2):

x̂ = r̂2 ẑ = ⇣̂ ŷ = ẑ ⇥ x̂ (2.93)

The position of m3 relative the center of mass is then:

~r = xx̂ + yŷ + zẑ (2.94)

And ~⇢1 and ~⇢2 are:

~⇢1 = (x + ⌫)x̂ + yŷ + zẑ (2.95)

~⇢2 = (x + ⌫ � 1)x̂ + yŷ + zẑ (2.96)

with magnitudes:

⇢2
1 = (x + ⌫)2 + y2 + z2 (2.97)

⇢2
2 = (x + ⌫ � 1)2 + y2 + z2 (2.98)

The specific potential energy, U , of m3 is:

U = �

1 � ⌫

⇢1

�

⌫

⇢2

(2.99)

and the specific kinetic energy, K, of m3 is:

K =
1

2
( ~̇rI · ~̇rI) (2.100)

and ~̇rI is the inertial-frame velocity and is given by:

~̇rI = ~̇r + ~! ⇥ ~r = (ẋ � y)x̂ + (ẏ + x)ŷ + żẑ (2.101)
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We may then write K as:

K =
1

2

⇥
(ẋ � y)2 + (ẏ + x)2 + ż2

⇤
(2.102)

The Lagrangian, L = K � U , is then:

L =
1

2

⇥
(ẋ � y)2 + (ẏ + x)2 + ż2

⇤
+

1 � ⌫

⇢1

+
⌫

⇢2

(2.103)

We can now get the equations of motion from the Euler-Lagrange equation:

@L

@qi

=
d

dt

@L

@q̇i

(2.104)

We start with the @L
@qi

:

@L

@x
= (ẏ + x) �

1 � ⌫

⇢3
1

(x + ⌫) �

⌫

⇢3
2

(x + ⌫ � 1) (2.105)

@L

@y
= �(ẋ � y) �

1 � ⌫

⇢3
1

y �

⌫

⇢3
2

y (2.106)

@L

@z
= �

1 � ⌫

⇢3
1

z �

⌫

⇢3
2

z (2.107)

The d
dt

@L
@q̇i

are then:

d

dt

@L

@ẋ
=

d

dt
(ẋ � y) = ẍ � ẏ (2.108)

d

dt

@L

@ẏ
=

d

dt
(ẏ + x) = ÿ + ẋ (2.109)

d

dt

@L

@ż
=

d

dt
ż = z̈ (2.110)
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So the equations of motion in the rotating frame are:

ẍ = 2ẏ + x �

1 � ⌫

⇢3
1

(x + ⌫) �

⌫

⇢3
2

(x + ⌫ � 1) (2.111)

ÿ = �2ẋ + y � y
1 � ⌫

⇢3
1

� y
⌫

⇢3
2

(2.112)

z̈ = �z
1 � ⌫

⇢3
1

� z
⌫

⇢3
2

(2.113)

2.4.3 CR3BP Jacobi Integral

I will use the form of the Jacobi Integral given by:

J =
@L

@~̇q
· ~̇q � L (2.114)

For the Lagrangian in Eqn. 2.103 the Jacobi Integral is:

J = (ẋ � y)ẋ + (ẏ + x)ẏ + ż2
�

1

2

⇥
(ẋ � y)2 + (ẏ + x)2 + ż2

⇤
�

1 � ⌫

⇢1

�

⌫

⇢2

(2.115)

J =
1

2

⇥
(ẋ � y)(ẋ + y) + (ẏ + x)(ẏ � x) + ż2

⇤
�

1 � ⌫

⇢1

�

⌫

⇢2

(2.116)

J =
1

2

�
ẋ2 + ẏ2 + ż2

� x2
� y2

�
�

1 � ⌫

⇢1

�

⌫

⇢2

(2.117)

Or, in terms ~rI from Eqn. 2.101:

J =
1

2

⇣
~̇rI · ~̇rI

⌘
� x2

� y2
� ẋy + xẏ �

1 � ⌫

⇢1

�

⌫

⇢2

(2.118)

Note that:

⇣
~rI ⇥ ~̇rI

⌘
· ẑ = x2 + y2 + ẋy � xẏ (2.119)
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So:

J =
1

2

⇣
~̇rI · ~̇rI

⌘
�

⇣
~rI ⇥ ~̇rI

⌘
· ẑ �

1 � ⌫

⇢1

�

⌫

⇢2

(2.120)

2.4.4 Jacobi Constant

The time derivative of Eqn. 2.117 is:

J̇ = ẋẍ+ẏÿ+żz̈�xẋ�yẏ+
1 � ⌫

⇢3
1

[(x + ⌫)ẋ + yẏ + zż]+
⌫

⇢3
2

[(x + ⌫ � 1)ẋ + yẏ + zż]

(2.121)

J̇ = ẋ

✓
ẍ � x +

1 � ⌫

⇢3
1

(x + ⌫) +
⌫

⇢3
2

(x + ⌫ � 1)

◆
+ ẏ

✓
ÿ � y + y

1 � ⌫

⇢3
1

+ y
⌫

⇢3
2

◆

+ ż

✓
z̈ + z

1 � ⌫

⇢3
1

+ z
⌫

⇢3
2

◆
(2.122)

If we substitute the equations of motion from Eqn. 2.111, Eqn. 2.112, and Eqn. 2.113

in to the above, we get:

J̇ = ẋ(2ẏ) + ẏ(�2ẋ) = 0 (2.123)

Therefore the Jacobi Integral is constant for the CR3BP. And since it is constant, we

may define the Jacobi Constant as �2J from Eqn. 2.120:

JC = 2

✓
1 � ⌫

⇢1

+
⌫

⇢2

◆
+ 2

⇣
~rI ⇥ ~̇rI

⌘
· ẑ �

⇣
~̇rI · ~̇rI

⌘
(2.124)

2.4.5 The Tisserand Invariant

Let’s assume the m3 is at a point in its trajectory that is far enough from m2 that

its orbit may be approximated by an instantaneous two-body orbit of m1. In that
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case, we may apply: Eqn. 2.5, which with our current nondimemsionalization (i.e.

renc = 1) is:

~̇rI · ~̇rI = 2 �

1

a
(2.125)

also, from angular momentum:

~rI ⇥ ~̇rI =
p

a(1 � e2)ŝ3 (2.126)

or, since ẑ = q̂3:

⇣
~rI ⇥ ~̇rI

⌘
· ẑ = cos(isc)

p
a(1 � e2)ẑ (2.127)

Now if we substitute into Eqn. 2.124:

JC = 2

✓
1 � ⌫

⇢1

+
⌫

⇢2

� 1

◆
+

1

a
+ 2 cos(isc)

p
a(1 � e2) (2.128)

Now if we assume that m1 is very close to the center of mass, i.e. ⌫ ⇡ 0, and that

⇢1 ⇡ renc = 1:

JC ⇡

1

a
+ 2 cos(isc)

p
a(1 � e2) (2.129)

This approximation of the Jacobi Constant is the Tisserand’s Parameter, and if

we return to using units, it takes this form:

CT iss =
renc

asc

+ 2 cos(isc)

r
asc

renc

(1 � e2
sc) (2.130)

and now we can see the connection to Eqn. 2.84. Tisserand’s Parameter is related to

v1:

CT iss = 3 �

✓
v1

vc

◆2

(2.131)
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or in terms of Jacobi’s Constant:

JC ⇡ 3 �

✓
v1

vc

◆2

(2.132)

2.5 How Flybys Change ~v1

So far we’ve done a lot of work relating the orbit of the central body to the ~v1.

Now it is time to look at the orbit relative to the flyby body and how flybys change

the ~v1 and the central-body orbit.

2.5.1 Bending Angle

Figure 2.9 shows the flyby hyperbola and the change in the ~v1 direction. Here

~v 0
1 is the ~v1 before the flyby and ~v 00

1 is after the flyby. The angle between ~v 0
1 and

~v 00
1 is the bending angle, �.

�

f1
⇥v 01
⇥v 001

1

�

f1
⇥v 01
⇥v 001

1

�

f1
⇥v 01
⇥v 001

1

�

2
+

⇡

2

1

f1

1

Figure 2.9: Hyperbolic flyby diagram with bending angle
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To understand the bending from a flyby, let’s start with the conic equation for

the flyby:

rfb =
afb(1 � e2

fb)

1 + efb cos(ffb)
(2.133)

and solve for true anomaly:

cos(ffb) =
1

efb


afb

rfb

(1 � e2
fb) � 1

�
(2.134)

The true anomaly as rfb ! 1 is f1:

cos(f1) = lim
rfb!1


afb(1 � e2

fb)

rfbefb

�

1

efb

�

= �

1

efb

(2.135)

By the geometric construction in Fig. 2.9, the f1 angle is also given by:

f1 =
�

2
+

⇡

2
(2.136)

so:

� cos(f1) = � cos

✓
�

2
+

⇡

2

◆
= sin

✓
�

2

◆
(2.137)

The flyby orbit periapsis then gives:

efb = 1 �

rpfb

afb

(2.138)

afb =
µfb

v2
1

(2.139)

efb = 1 +
rpfbv

2
1

µga

(2.140)
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So, the bending angle of the flyby (�) is:

sin

✓
�

2

◆
=

µga

µga + rpfbv2
1

(2.141)

or in terms of the �V between ~v 0
1 and ~v 00

1:

�Vfb =
2v1µga

µga + rpfbv2
1

(2.142)

2.5.2 Asymptote Sub-Point

Most moons in the solar system3 are tidally locked to their planet. In terms of

coordinate systems, this means that the moon’s prime meridian, on average, points

towards the planet, i.e. the �p̂1 direction. In addition, the poles of most moons point

in the direction of their orbit normals.

This creates a correspondence in the orientation of the crank sphere shown in

Fig. 2.2 and the latitude and longitude on a body. And we may write the v-infinity

unit vector in terms of latitude (�) and longitude (�) for such moons [34] (neglecting

any libration of the prime meridian):

v̂1 = � cos(�0) cos(�0)p̂1 � cos(�0) sin(�0)p̂2 + sin(�0)p̂3 (2.143)

Equation 2.143 may be used with Eqn. 2.49 to convert pump and crank to latitude

and longitude, and Eqn. 2.48 may be used with inclination and flight path angle.

2.5.3 The B-Plane

Planet or satellite flyby approach trajectories are typically targeted in B-plane

coordinates, which have good numerical convergence [35]. The B-plane is a plane

passing through the target body center and perpendicular to the asymptote of the

3Saturn’s moon Hyperion is not tidally locked. In fact, it is chaotically rotating. But all moons
in the Solar System larger than Hyperion (and even several smaller such as Uranus’ Miranda) are
tidally locked and their poles point very closely to their orbit normals.
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incoming trajectory. The B-vector is a vector in that plane, from the planet center to

the piercing-point of the trajectory asymptote. The B-vector specifies where the point

of closest approach would be if the target planet had no mass and did not deflect the

flight path. Coordinates are defined by three orthogonal unit vectors, Ŝ, T̂ , and R̂,

with the system origin at the center of the target body. The Ŝ vector is a unit vector

parallel to the spacecraft ~v1 vector .

Ŝ = v̂0
1 = b̂3 (2.144)

T̂ is arbitrary. For planetary moon tours, T̂ is usually specified to lie in the target

body’s equatorial plane. For interplanetary trajectories it is also often specified to

either lie in the ecliptic or be normal to the Earth’s pole vector. I will define T̂ as

the cross product of the incoming asymptote and the flyby body’s pole vector (p̂3):

T̂ =
Ŝ ⇥ p̂3

cos �0

= b̂1 (2.145)

Equation 2.145 is divided by the cosine of the latitude of the asymptote (�0) in order

to render T̂ a unit vector since generally Ŝ and p̂3 are not orthogonal. Finally R̂

completes the orthogonal triad:

R̂ = Ŝ ⇥ T̂ = b̂2 (2.146)

This coordinate system is shown in Fig. 2.10. The angle from the +T̂ axis to the

B-vector is the B-plane angle, ✓fb.

The B-vector is then given by:

~B = B
h
cos(✓fb)b̂1 + sin(✓fb)b̂2

i
(2.147)
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Figure 2.10: B-plane diagram

The magnitude of ~B, referred to as the impact parameter, is found from the flyby

angular momentum:

hfb = µga

q
afb(1 � e2

fb) (2.148)

= rpfbvpfb (2.149)

=
q

µgarpfb (2µga � rpfbv2
1) (2.150)

Note that as rfb ! 1:

lim
rfb!1

[~rfb ⇥ ~vfb] = Bv1ĥfb (2.151)

therefore:

B =
q

r2
pfb + 2µgarpfb/v2

1 (2.152)

It is common to specify the flyby aim point in terms of ~B · T̂ and ~B · R̂:

~B · T̂ = B cos(✓fb) (2.153)

~B · R̂ = B sin(✓fb) (2.154)
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Figure 2.11: Spherical triangle for components of bending

2.5.4 Pump and Crank Changes

The maximum change in pump angle from a given flyby is when the spacecraft

velocity vector before the flyby (~v 0
sc) and after the flyby (~v 00

sc) are both in the same

plane and there is no change to the crank angle. In that case the change in pump

angle is exactly the bending angle from the flyby. However, if some of the bending is

used to change the crank angle, less of the bending can be used to change the pump

angle.

|↵00
� ↵0

|  � (2.155)

Figure 2.11 shows the spherical triangle formed by ~vga and the ~v1 vectors before

and after the flyby. If ↵0 is the pump angle before the flyby, and ↵00 is the pump

angle after the flyby, Fig. 2.11 shows us how much  will change with a given bending

angle.

From Eqn. 2.28:

~v 0
1 = v1 sin(↵0) cos(0)q̂1 + v1 cos(↵0)q̂2 � v1 sin(↵0) sin(0)q̂3 (2.156)
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This dot product then yields a result equivalent to the spherical law of cosines applied

to Fig. 2.11:

cos(�) = cos(↵0) cos(↵00) + sin(↵0) sin(↵00) cos(�) (2.159)

or, solved for cos(�):

cos(�) =
cos(�) � cos(↵0) cos(↵00)

sin(↵0) sin(↵00)
(2.160)

Equation 2.160 lets us take a bending angle for a given flyby altitude from Eqn. 2.141,

and then deduce the change to pump and crank. Or, conversely, the bending required

for a given change in pump and crank.

If T̂ is in the gravity-assist body’s orbit plane, then B-plane angle is the angle of

the flyby orbit plane relative to gravity-assist body’s orbit plane. Applying Napier’s

Rules to the right spherical triangle defined by ~v 0
1 and ~v 00

1 then yields the following

relation for the B-plane angle, ✓fb:

cos(✓fb) =
tan(�↵)

tan(�)
(2.161)

and

sign(✓fb) = �sign(�) (2.162)

2.6 How to Apply the Results in This Chapter

Say we are given some orbit and told it has a gravity assist. We would start with

Eqn. 2.66 in § 2.1.3 to get the v1 magnitude. Then from § 2.1.4 we use Eqn. 2.67

to get ↵ and Eqn. 2.68 to get . Then, if we wanted to see what orbits could be

accessed with multiple flybys of this gravity-assist body, we could vary ↵ and  and

use the relations in § 2.3 to find what orbits are possible. We could also assume a

minimum rpfb that we would be comfortable with and use Eqn. 2.141 in § 2.5.1 to

39
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find a maximum �. The relations in § 2.5.4 could then be used to look at what pump

and crank changes are possible with a single flyby.

Once we pick a new orbit that we want, we can use Eqn. 2.159 to solve for the �

needed from the flyby. Equation 2.141 can then be solved to find the rpfb needed:

rpfb =
µga

v2
1

✓
1/ sin

✓
�

2

◆
� 1

◆
(2.163)

From here, Eqn. 2.161 gives us the B-plane angle and Eqn. 2.152 gives us the B-plane

magnitude, and we now have all that we need to target the flyby that gives us the

desired change in pump and crank.
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with the system origin at the center of the target body. The Ŝ vector is a unit vector

parallel to the spacecraft ~v1 vector .

Ŝ = v̂0
1 = b̂3 (2.144)

T̂ is arbitrary. For planetary moon tours, T̂ is usually specified to lie in the target

body’s equatorial plane. For interplanetary trajectories it is also often specified to

either lie in the ecliptic or be normal to the Earth’s pole vector. I will define T̂ as

the cross product of the incoming asymptote and the flyby body’s pole vector (p̂3):

T̂ =
Ŝ ⇥ p̂3

cos �0

= b̂1 (2.145)

Equation 2.145 is divided by the cosine of the latitude of the asymptote (�0) in order

to render T̂ a unit vector since generally Ŝ and p̂3 are not orthogonal. Finally R̂

completes the orthogonal triad:

R̂ = Ŝ ⇥ T̂ = b̂2 (2.146)

This coordinate system is shown in Fig. 2.10. The angle from the +T̂ axis to the

B-vector is the B-plane angle, ✓fb.

The B-vector is then given by:

~B = B
h
cos(✓fb)b̂1 + sin(✓fb)b̂2

i
(2.147)

The magnitude of ~B, referred to as the impact parameter, is found from the flyby

angular momentum:

hfb = µga

q
afb(1 � e2

fb) (2.148)

= rpfbvpfb (2.149)

=
q

µgarpfb (2µga � rpfbv2
1) (2.150)
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Equation 2.160 lets us take a bending angle for a given flyby altitude from Eqn. 2.141,

and then deduce the change to pump and crank. Or, conversely, the bending required

for a given change in pump and crank.

If T̂ is in the gravity-assist body’s orbit plane, then B-plane angle is the angle of

the flyby orbit plane relative to gravity-assist body’s orbit plane. Applying Napier’s

Rules to the right spherical triangle defined by ~v 0
1 and ~v 00

1 then yields the following

relation for the B-plane angle, ✓fb:

cos(✓fb) =
tan(�↵)

tan(�)
(2.161)

and

sign(✓fb) = �sign(�) (2.162)

2.6 How to Apply the Results in This Chapter

Say we are given some orbit and told it has a gravity assist. We would start with

Eqn. 2.66 in § 2.1.3 to get the v1 magnitude. Then from § 2.1.4 we use Eqn. 2.67

to get ↵ and Eqn. 2.68 to get . Then, if we wanted to see what orbits could be

accessed with multiple flybys of this gravity-assist body, we could vary ↵ and  and

use the relations in § 2.3 to find what orbits are possible. We could also assume a

minimum rpfb that we would be comfortable with and use Eqn. 2.141 in § 2.5.1 to

Figure 2.12: Spherical triangle for ✓fb

~v 00
1 = v1 sin(↵00) cos(00)q̂1 + v1 cos(↵00)q̂2 � v1 sin(↵00) sin(00)q̂3 (2.157)

and the dot product of these two vectors gives the bending angle:

~v 0
1 · ~v 00

1 = cos(�) (2.158)

This dot product then yields a result equivalent to the spherical law of cosines applied

to Fig. 2.11:

cos(�) = cos(↵0) cos(↵00) + sin(↵0) sin(↵00) cos(�) (2.159)

or, solved for cos(�):

cos(�) =
cos(�) � cos(↵0) cos(↵00)

sin(↵0) sin(↵00)
(2.160)

Equation 2.160 lets us take a bending angle for a given flyby altitude from Eqn. 2.141,

and then deduce the change to pump and crank. Or, conversely, the bending required

for a given change in pump and crank.

If T̂ is in the gravity-assist body’s orbit plane, then B-plane angle is the angle of

the flyby orbit plane relative to gravity-assist body’s orbit plane. Applying Napier’s
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Rules to the right spherical triangle defined by ~v 0
1 and ~v 00

1 (see Fig. 2.12) then yields

the following relation for the B-plane angle, ✓fb:

cos(✓fb) =
tan(�↵)

tan(�)
(2.161)

and

sign(✓fb) = �sign(�) (2.162)

2.6 How to Apply the Results in This Chapter

Say we are given some orbit and told it has a gravity assist. We would start with

Eqn. 2.66 in § 2.1.3 to get the v1 magnitude. Then from § 2.1.4 we use Eqn. 2.67

to get ↵ and Eqn. 2.68 to get . Then, if we wanted to see what orbits could be

accessed with multiple flybys of this gravity-assist body, we could vary ↵ and  and

use the relations in § 2.3 to find what orbits are possible. We could also assume a

minimum rpfb that we would be comfortable with and use Eqn. 2.141 in § 2.5.1 to

find a maximum �. The relations in § 2.5.4 could then be used to look at what pump

and crank changes are possible with a single flyby.

Once we pick a new orbit that we want, we can use Eqn. 2.159 to solve for the �

needed from the flyby. Equation 2.141 can then be solved to find the rpfb needed:

rpfb =
µga

v2
1

✓
1/ sin

✓
�

2

◆
� 1

◆
(2.163)

From here, Eqn. 2.161 gives us the B-plane angle and Eqn. 2.152 gives us the B-plane

magnitude, and we now have all that we need to target the flyby that gives us the

desired change in pump and crank.
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CHAPTER 3. BALLISTIC GRAVITY-ASSIST TRANSFERS

There are two classes of ballistic gravity-assist transfers: same-body and di↵erent-

body transfers. Same-body transfers are to and from the same gravity-assist body.

Because of this, there are built-in phasing constraints that both limit the sorts of

transfers possible and also allow us to develop some useful analytic relations that

are independent of the particular time of the transfer (if we assume the gravity-assist

body is in a circular orbit). Di↵erent-body transfers are between two di↵erent gravity-

assist bodies. These transfers depend on the relative positions of the two bodies at

the time of the transfer, so it is harder to develop general relations to describe these

transfers.

In order to develop relations independent of the flyby times, we may assume

that the gravity-assist bodies are in circular orbits. We may also assume that the

gravity-assist body orbits are coplanar with each other, but not necessarily with the

spacecraft orbit. We will get a lot of mileage out of these assumptions as they allow

us to eliminate time dependencies with the ephemerides of the gravity-assist bodies.

This will allow us to develop methods that provide good insight into the fundamental

geometric constraints that govern gravity-assist transfers. We can then use these

methods to develop initial guesses for numerical methods that can easily account for

the full ephemerides of the gravity-assist bodies.

3.1 Same-Body Transfers

If we perform two flybys of the same gravity-assist body in succession, there are

three kinds of ballistic transfers possible between these encounters: resonant, non-

resonant, and backflip. Each category of transfer places constraints on the period and

inclination of the orbit around the central body. For these transfers, the flyby before
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the transfer will be denoted with one prime and the flyby after the transfer with a

double-prime.

3.1.1 Resonant Transfers

In the case of the resonant transfer, the time of flight between the flybys is some

integer multiple of the gravity-assist body’s period and resonant transfers are named

by the ratio of gravity-assist body revolutions to spacecraft revolutions. Resonant

transfers are labeled N :M , where N is the number of gravity-assist body revs and

M is the number of spacecraft revs.1 For example a 3:1 resonant transfer has 1

spacecraft rev for every 3 gravity-assist body revs and a flight time of 3 gravity-assist

body periods. A 4:5 resonance has 5 spacecraft revs for every 4 gravity-assist body

revs and has a flight time of 4 gravity-assist body periods. The ratio between the

spacecraft orbit’s period and the gravity-assist body’s period is then:

Tsc

Tga

=
M

N
(3.1)

Since the flight time is an integer number of gravity-assist body periods, both

encounters occur at the same place in the gravity-assist body’s orbit. That is, the

longitude of encounter is the same for the prime and double-prime flybys:

L00
enc = L0

enc (3.2)

Therefore, the spacecraft orbit plane is only constrained to contain the line connecting

this point to the central body and the transfer may achieve a wide range of inclination.

The pump angle of a resonant transfer, from Eqn. 2.13 and Eqn. 3.1, is given by:

cos(↵) =
v2

c

h
2 �

�
N
M

� 2
3

i
� v2

1 � v2
ga

2v1vga

(3.3)

1The N : M labeling is the convention for gravity-assist trajectory design. In the CR3BP, the
convention is M :N .
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The crank angle depends on inclination and is given by Eqn. 2.68:

sin() = � tan(isc)

✓
vc/v1 + cos(↵)

sin(↵)

◆
(3.4)

where, �⇡/2    ⇡/2 for inbound encounters and ⇡/2    3⇡/2 for outbound.

We may repeat the same resonance indefinitely by using the flyby �V to change

crank and not pump. As we increase or decrease crank from zero, inclination will

increase until the maximum inclination is reached for  = ±⇡/2. Beyond that, the

flyby will switch from an inbound to outbound flyby and inclination will decrease

until  = ⇡. Then inclination will decrease until  = ±3⇡/2, and the flyby will

switch back to inbound and inclination will decrease again.

Increasing or decreasing crank until the maximum inclination is reached and the

flyby switches from inbound to outbound or outbound to inbound is a technique called

cranking over the top. Cranking over the top is useful both to get ground tracks to

globally cover the surface of the gravity-assist body and to move the line of apsides

to the other side of the central body.

3.1.2 Non-Resonant Transfers

In the case of the non-resonant transfer, the flybys of the gravity-assist body occur

at di↵erent places in the gravity-assist body’s orbit. That is, the prime and double-

prime flybys occur at di↵erent longitudes of encounter:

L00
enc = L0

enc + 2⇡y (3.5)

Equation 3.5 introduces a new quantity, y, which is a non-dimensional time of flight

o↵set:

y = ttrans/Tga � Ne (3.6)
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This o↵set is time of flight of the transfer, ttrans, divided by the period of the gravity-

assist body minus the number of full revolutions, Ne, of the gravity-assist body be-

tween the two encounter times. This number of revolutions is counted by the number

of times that the gravity-assist body passes through the initial longitude of encounter.

This time of flight o↵set is also the angular o↵set between the two encounters in the

gravity-assist body’s orbit divided by 2⇡.

Both encounters of the gravity-assist body will fall on a line when y is either 0 or

1/2. When y is zero, we have a resonant transfer. When y is 1/2, we have a special

case of the non-resonant transfer that is given its own category, the backflip transfer.

These backflip transfers are described in the next section and will be excluded from

the category of non-resonant transfers. When y is neither 0 nor 1/2, we have a

non-resonant transfer where both encounters do not fall on the same line.

Since, both encounters are not on the same line for a non-resonant transfer, the or-

bit plane of the transfer is uniquely determined. Specifically, all non-resonant transfers

must be in the gravity-assist body’s orbit plane and therefore have zero inclination.

Non-resonant transfers either go from an inbound to an outbound encounter (IO)

or from an outbound to an inbound encounter (OI). Both encounters occur at the same

true anomaly magnitude, since both occur at the same renc. The inbound encounter

has a negative true anomaly and the outbound has a positive true-anomaly.

Although, it may first appear that there would be continuum of non-resonant

transfers, there are actually only discrete values of orbit period that are allowable

for a given v1. As will be shown below, once the number of complete spacecraft

revolutions (c) and complete gravity-assist body revolutions (d) are specified there is

only one inbound-outbound transfer and one outbound- inbound transfer for a given

v1 magnitude.

Figure 3.1 illustrates a non-resonant transfer where the inbound encounter is la-

beled ’I’ and the outbound encounter is labeled ’O’. In Fig. 3.1, we see that for an

outbound to inbound transfer the angle between encounters is 2⇡ � 2|fenc| and for an

inbound to outbound encounter that angle is 2|fenc|. From Eqn. 3.5, in both cases
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Figure
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Figure 3.1: Non-resonant transfer

the angle between the encounters is 2⇡y. From these observations, we may derive

this expression for an inbound to outbound transfer in terms of the true anomaly of

encounter from Eqn. 2.81:

yIO = |fenc|/⇡ (3.7)

and this expression for an outbound to inbound transfer:

yIO = 1 � |fenc|/⇡ (3.8)

To compute the time of flight of a non-resonant transfer, we first compute the eccentric

anomaly for Kepler’s equation. This expression gives the eccentric anomaly, which

will be negative at the inbound encounter and positive at the outbound encounter:

cos(Eenc) =
1

esc

✓
1 �

renc

asc

◆
(3.9)
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Kepler’s equation then gives the time from periapsis for the encounters:

⌧enc =
Tsc

2⇡
[Eenc � esc sin(Eenc)] (3.10)

As with fenc, ⌧enc will be negative at the inbound encounter and positive at the

outbound encounter, but will have the same magnitudes for both encounters. It is

possible for an inbound to outbound transfer to use a hyperbolic (or parabolic) orbit

around the central body. The hyperbolic anomaly for this case is given by:

cosh(Henc) =
1

esc

✓
1 �

renc

asc

◆
(3.11)

and the time from periapsis is:

⌧enc =
1

vc

r
asc

renc

[esc sinh(Eenc) � Henc] (3.12)

Hyperbolic and parabolic transfers are special cases of interest for trajectories that

capture or escape the central body. However, the bulk of gravity-assist tour design is

concerned with elliptic and circular transfers, and we will ignore unbound orbit cases

for the remainder of the chapter.

The time of flight for an inbound to outbound transfer is given by:

ttrans;IO = c Tsc + 2|⌧enc| (3.13)

Here, Mais the number of apoapses in the spacecraft’s orbit passed between encoun-

ters. The time of flight for an outbound to inbound transfer is:

ttrans;OI = c Tsc � 2|⌧enc| (3.14)

In Eqn. 3.14, for an outbound to inbound transfer, the spacecraft must pass through

at least one apoapsis.
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If we combine Eqn. 3.13 with Eqn. 3.6, we get the following for an inbound to

outbound transfer:

yIO =
1

Tga

(Ma Tsc + 2|⌧enc|) � Ne (3.15)

and from combining Eqn. 3.14 with Eqn. 3.6, we get the following for an outbound

to inbound transfer:

yOI =
1

Tga

(Ma Tsc � 2|⌧enc|) � Ne (3.16)

The angular o↵set is given by Eqn. 3.7 and Eqn. 3.8, and the time of flight o↵set

is given by Eqn. 3.15 and Eqn. 3.16. Since y is non-dimensionalized to be both an

angular and a time of flight o↵set, we can impose the condition that the gravity assist

body is reencountered by combining these equations. After Ma and Ne are selected,

the period of the transfer is determined by solving the system of equations with a

given value of v1: Eqn. 3.7 and Eqn. 3.15 for and inbound-outbound transfer or

Eqn. 3.8 and Eqn. 3.16 for an outbound-inbound transfer. These equations may be

solved iteratively, using the relations in § 2.3 to get asc and esc. Solutions for some

example cases are given in Table 3.1.

The pump angle for these transfers are found from the period by:

cos(↵) =

v2
c


2 �

⇣
Tga

Tsc

⌘ 2
3

�
� v2

1 � v2
ga

2v1vga

(3.17)

The crank angle for a non-resonant transfer is either 0 or ⇡ depending on whether

the flyby is inbound or outbound respectively.

Orbit Orientation Changes with Non-Resonant Transfers

WIth the relations in § 2.3 we see from Eqn. 2.79 that as period increases, ec-

centricity decreases and in Eqn. 2.80 that as period increases, |!sc| decreases. But
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Table 3.1: Example Non-Resonant Transfers

v1/vc Ne Ma IO:Tsc/Tga OI:Tsc/Tga

0.5 1 0 0.541 0.432
0.5 1 1 1.247 1.830
0.5 1 2 2.149 2.878
0.5 1 3 3.116 3.896
0.5 1 6 6.087 6.917
0.5 2 1 0.719 0.802
0.5 2 2 1.137 1.390
0.5 2 3 1.596 1.919
0.5 3 1 0.518 0.475
0.5 3 2 0.799 0.880
0.5 3 3 1.095 1.251
1.0 1 0 0.682 0.354
1.0 1 1 1.531 1.461
1.0 1 2 2.460 2.545
1.0 1 3 3.422 3.583
1.0 1 6 6.372 6.630
1.0 2 1 0.823 0.656
1.0 2 2 1.281 1.214
1.0 2 3 1.754 1.746
1.0 3 1 0.570 0.422
1.0 3 2 0.878 0.781
1.0 3 3 1.192 1.139
1.5 1 0 0.727 0.432
1.5 1 1 1.817 1.200
1.5 1 2 2.787 2.197
1.5 1 3 3.768 3.222
1.5 1 6 6.738 6.259
1.5 2 1 0.879 0.647
1.5 2 2 1.409 1.105
1.5 2 3 1.907 1.587
1.5 3 1 0.559 0.459
1.5 3 2 0.921 0.756
1.5 3 3 1.269 1.072
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since sign(!sc) = sign(), a period increase decreases !sc for an outbound flyby and

increases it for an inbound flyby. Since non-resonant transfers switch from inbound

to outbound and vice versa, it is possible to use a repeating sequence of pump-up

(i.e. period increasing) and pump-down (i.e. period decreasing) flybys to rotate the

spacecraft orbit. Table 3.2 from Wolf and Smith [9] summarizes how pumping changes

orientation with non-resonant transfers. Using such sequences of non-resonant trans-

fers to change orbit orientation is called petal rotation. An example of this petal

rotation is shown in Fig. 3.2.

Table 3.2: Orbit Orientation Changes

pump-up flyby pump-down flyby
inbound flyby clockwise orbit rotation counterclockwise orbit rotation
outbound flyby counterclockwise orbit rotation clockwise orbit rotation

3.1.3 Backflip Transfers

Backflip Transfers are a special case of a non-resonant transfer where the second

encounter is ⇡ radians from the first. Because of this they are also sometimes called

n⇡-transfers, ⇡-transfers, or 180� transfers. Figure 3.3 shows an example backflip

transfer.The longitude of encounter of the prime and double-prime flybys di↵er by ⇡

radians:

L00
enc = L0

enc ± ⇡ (3.18)

Backflips are useful in tour design as they move the longitude of encounter by ⇡

radians in a single transfer. When accessible, they are the quickest method to move

the longitude of encounter.
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Figure 3.2: Example petal rotation with Triton

Gravity-assist	body	orbit	plane

Backflip	orbit	
plane

Figure 3.3: Illustration of same-body backflip transfer
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The flybys of a backflip occur on a line that runs through the central body.

This means that backflips can be inclined like resonant transfers. Setting y=1/2

in Eqn. 3.15 and Eqn. 3.16 gives analogous equations for backflips. For an inbound

to outbound backflip:

✓
Ne +

1

2

◆
Tga = Ma Tsc + 2|⌧enc| (3.19)

and for an outbound to inbound backflip transfer:

✓
Ne +

1

2

◆
Tga = Ma Tsc � 2|⌧enc| (3.20)

An additional constraint is placed on backflips since the only way to have two en-

counters ⇡ radians apart is for both flybys to be on the line of nodes. This requires

that !sc = ±⇡/2. From Eqn. 2.80:

e2
sc = 1 �

renc

asc

(3.21)

When Eqn. 3.21 is substituted into Eqn. 3.9, we get the interesting result that the

eccentric anomaly of a backflip depends only on the semimajor axis (and therefore

the period):

cos(Eenc) =

r
1 �

renc

asc

(3.22)

This means that Kepler’s Equation and therefore Eqn. 3.19 and Eqn. 3.20 are inde-

pendent of v1 magnitude. Table 3.3 provides some example solutions to Eqn. 3.19

and Eqn. 3.20.

Equation 3.21 can be combined with Eqn. 2.79 to yield the following expression

for the inclination of a backflip transfer:

cos(isc) =
1

2

"
3 �

renc

asc

�

✓
v1

vc

◆2
#

(3.23)
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Table 3.3: Example Same-Body Backflip Transfers

Ne Ma IO:Tsc/Tga OI:Tsc/Tga

0 0 1 no transfer

1 0 no transfer 1
1 1 1.135 1.785
1 2 2.231 2.758
1 3 3.249 3.747
1 4 4.257 4.740
1 5 5.262 5.736
2 2 1.045 1.407
2 3 1.602 1.890
3 3 1.023 1.277

This is an important result: there is only one permissible inclination for a given d, c

same-body backflip transfer depending on v1. Backflip transfers can be very di�cult

to converge numerically without using the inclination constraint from Eqn. 3.23.

3.1.4 The V-Infinity Globe

Figure 2.2 showed a sphere for all v-infinity vectors with the same magnitude.

Each point on this sphere represents a direction of ~v1, and therefore a corresponding

~vsc. This, as was shown in § 2.3, is then su�cient to uniquely determine the orbit

about the central body. The surface of the v-infinity globe therefore represents all

orbits with a given v1 magnitude with respect a the gravity-assist body.

By relating the pump and crank of a v-infinity vector to the orbit of the central

body, we can draw contours of orbits on the v-infinity globe representing orbits with a

given characteristic such as orbit period or inclination as shown in Fig. 3.4. In Fig. 3.4,

blue contours representing orbits with the same orbit period and green contours with

the same inclination. To draw contours of constant period we use Eqn. 2.67, and to

draw contours of constant inclination we use Eqn. 2.68.
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We will use the outbound asymptotes from flybys in a tour to draw a map of that

tour on the v-infinity globe. The inbound flyby asymptotes could also be plotted as

the negative vector of the outbound asymptotes from the previous flybys in a tour.

If this were done, a flyby’s groundtrack would then be a great circle connecting these

two points.

If we assume that the gravity-assist body is in a circular orbit we can non-

dimensionalize the tour map so that it is applicable to any moon. To do this we

divide distances by renc, velocities by vc, and times by Tc. Figure 3.5 shows this map

for v1/vc = 0.75 with vacant node contours, non-resonant, and backflip transfers

added. Figure 3.6 through Fig. 3.10 shows this for other values of v1/vc.

In these plots, contours of constant period are shown in blue and labeled with

their resonance with respect to gravity-assist body. Inclination contours are shown

in green for steps of 10 degrees. Node radius contours non-dimesionlized in terms of

rvac/renc are shown in cyan. The red period contour represents escape energy, and

the orbits in the region bounded by it are hyperbolic with respect to the central body.

Similarly, the dashed black contour bounds orbits that are retrograde. Finally the

magenta ’x’ and ’o’ marks represent some non-resonant and backflip transfers. The

‘x’ represents the asymptote before a transfer, and the ‘o’ is the asymptote after the

transfer.

On these maps, the “northern hemisphere” is comprised of orbits which have

the gravity-assist encounter at the ascending node, and the “southern hemisphere”

of encounters is at the descending node. The hemisphere from 90� E to 90� W (i.e.

the moon’s anti-planet hemisphere) is comprised of asymptotes for orbits which en-

counter the gravity-assist body outbound from periapsis, and the opposite hemisphere

is comprised of orbits with inbound flybys.



54

!0.6
!0.4

!0.200.20.40.6

!0.5

0

0.5

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

(v
!

/v
c
) " p

1(v
!

/v
c
) " p

2

(v
!

/v
c
) 
" 
p

3

Figure 3.4: The V-Infinity Globe

Figure 3.5: Non-dimensional Tour Map, v1/vc = 0.75
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Figure 3.6: Non-dimensional Tour Map, v1/vc = 0.25

Figure 3.7: Non-dimensional Tour Map, v1/vc = 0.5
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Figure 3.8: Non-dimensional Tour Map, v1/vc = 1.0

Figure 3.9: Non-dimensional Tour Map, v1/vc = 1.5
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Figure 3.10: Non-dimensional Tour Map, v1/vc = 2.0
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Figure 3.11: Tour Map for Cassini extended mission
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Bending Angle

The bending angle from a flyby becomes a distance on the surface of the v-infinity

globe. If we had a three-dimensional v-infinity globe at our disposal, we could measure

this distance with a pair of spanners to plot a tour. In practice, we can also do this

with a ruler on two-dimensional projections as long as we stay away from areas of the

tour map which are most distorted by the projection (e.g. the high latitudes in the

cylindrical projections used in this chapter).

3.1.5 Application To Cassini Extended Mission Design

Figure 3.11 is the tour map that was used for much of the early Cassini extended

mission design. It is a detailed map for the Cassini v-infinity at the end of the prime

mission (5.8 km/s) showing many various Titan resonances. Node crossing distances

are shown for the orbits of all of the major satellites except for Iapetus2, and node

crossings that intersect the rings are shown as a grey region. Orbits with periapses

below Saturn’s surface are in the central white region.

The last few orbits of the Cassini prime mission are plotted on Fig. 3.11. Each

orbit is a point, and the flybys are the lines connecting the points. The last orbit

of the prime mission is marked with an asterisk and a red circle is drawn around it

showing the 8� of bending from a 1000 km Titan flyby. The extended mission will

start from this point and move in steps of 8� or less across the map.

With this map, the Cassini tour designers were able to draw in tours with a pencil

and a ruler. The flight times of the tours could then be estimated by adding up the

Titan revs of the various resonant orbits. From this map, the tour designers could

quickly assess the various methods for achieving equatorial orbits or placing the node

crossings at the orbits of other moons (particularly Enceladus).

2Iapetus orbits in a di↵erent plane from the other satellites and encounters with it do not necessarily
occur on the line of nodes of the spacecraft’s orbit.
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3.2 Di↵erent-Body Transfers

For di↵erent body transfers the general approach to find them is to start from the

position of the first body at the time of the flyby and then use a Lambert solver to find

transfers to the second body. The transfer flight time and the number of revolutions

of the spacecraft orbit are varied to give a set of Lambert arcs connecting the two

bodies. The departure v1 is then calculated for each Lambert arc and those that

match the inbound v1 at the first flyby are then checked to see how much bending

is needed from the flyby to reach. Transfers that can be reached with flyby altitudes

above some preset minimum are then considered valid options. This algorithm, called

C3-matching,3 is a numerical approach that is dependent on the epoch and initial

conditions for a given tour. Although this technique has been used to great e↵ect

in tools such as STOUR [11–13] to find gravity-assist tours, it can only o↵er point

solutions.

In this section, we will attempt to gain insight into general, epoch-independent,

di↵erent-body transfers using the relations developed in the previous chapter. To

do this, we will look at planar transfers where both gravity-assist bodies and the

spacecraft orbit are all in the same plane and at inclined backflip transfers where the

two gravity-assist bodies are at node crossings of the spacecraft orbit.

3.2.1 Planar Transfers and Tisserand Graphs

For planar di↵erent-body transfers, the following two equations from § 2.3 (mod-

ified for zero isc) can be very useful:

renc

asc

= 2 �

1

v2
c

⇥
v2

1 + v2
ga + 2v1vga cos(↵)

⇤
(3.24)

3where C3 = v2
1
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3 �

✓
v1
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◆2

�

renc

asc

!2

(3.25)

If we vary ↵ from 0 to ⇡ we get all possible values of asc and esc for a given v1. We

can then use this to plot contours of the possible orbits for a given v1. Figure 3.12

is an exampel of this plotting v1 of specific energy and periapsis radius for the inner

Solar System. Here contours of 1, 3, 5, 7, . . . km/s v1 are plotted for Mercury, Venus,

Earth, and Mars. Where the contours intersect a transfer is possible between those

two planets with the v1 at each planet given by the respective contour. Dashed

lines at the top of the plot show orbits that can reach the outer planets starting

with Jupiter on the bottom. Marks on each contour correspond to a �↵ equal to

the bending angle, �, corresponding to a 300 km flyby at each planet. These tick

marks enable us to estimate how far along each contour a single flyby can change the

heliocentric orbit.

Because of the connection between Eqn. 3.25 and the Tisserand Parameter (as

explained in § 2.4.5), Fig. 3.12 is called a Tisserand Graph (a term first coined by

Longuski and introduced in Strange and Longuski [18]). This Tisserand Graph plots

specific energy and periapsis radius (an “E-rp plot”). Other Tisserand Graphs plot

period and periapsis (a “P -rp plot”), apoapsis and periapsis (a “ra-rp plot”), or any

other pair of quantities derived from asc and esc. In a Tisserand Graph each point

on the plot represents an orbit of the central body and flybys can be used to modify

that orbit by moving along a v1-contour. Tick marks are used to estimate when

multiple flybys are needed to move a certain distance along a contour. Gravity-Assist

tours can be designed by following contours across a plot. As an example, a VEEGA

trajectory that launches with a v1 of 3 km/s from Earth and then uses one Venus

and two Earth flybys to reach Jupiter is drawn on Fig. 3.12. Figure 3.13 shows this

VEEGA in more detail on a P -rp plot. Figure 3.14 shows an example P -rp plot used

for a Jupiter Europa Orbiter tour design by Kloster et al. [36] This Tisserand Graph
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Figure 3.12: Example E-rp Tisserand Graph [18]

has estimated radiation dose contours (in krad per orbit) overlaid to assist with the

design of a low radiation tour (magenta). The v1 contours in Fig. 3.14 are in steps

of 1 km/s, starting at 1 km/s.

3.2.2 Backflips and the Vacant Node

An inclined di↵erent body transfer is also called a Backflip Transfer as both en-

counters happen on the line of nodes. In Fig. 3.15 the first flyby in the transfer is

at the point labeled encounter and the second is at the vacant node. In order for the

transfer to be possible the vacant node must be at the orbit radius of the central body.

If we place renc at the radius of the first body’s orbit and rvac at the radius of the
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Figure 3.13: Example P -rp Tisserand Graph for VEEGA [18]

Figure 3.14: Example Tisserand Graph for JEO tour design [36]
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Figure 3.15: Vacant Node

second body’s orbit and combine Eqn. 2.76 with Eqn. 3.25 we can get the following

expression for the inclination required for a di↵erent-body backflip:

cos(isc) =

s
1

8

✓
1 +

r2

r1

◆ 
3 �

✓
v1

v1

◆2

�

r1

asc

!
(3.26)

where r1 is the first body’s orbit radius, v1 is the circular orbit velocity at r1, and r2

is the second body’s orbit radius.

3.3 Are These Transfers Really Ballistic?

The methods in this chapter can be used to design a tour that will have no �V in

the idealized patched-conic model with circular coplanar gravity-assist bodies. This

idealized tour can then be used as an initial guess for an optimizer using the full

force model, which can then be used to find deterministic �V needed to fly this tour

design. This deterministic �V will in general be non-zero, so these transfers are not

ballistic in the “real world”. However, these idealized relations are still very useful

for getting initial guesses to use in the optimizers with high-fidelity force models.
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CHAPTER 4. V-INFINITY LEVERAGING

For spacecraft trajectories using gravity assists, a spacecraft’s v1 (i.e. hyperbolic

excess velocity) relative a gravity-assist body cannot usually be changed without a

gravity assist from another body or a maneuver. The term V-Infinity Leveraging

refers to using maneuvers to change v1 and was first coined by Longuski (and first

appears in print in Williams’ Masters Thesis [12]). A small leveraging maneuver can

translate into a change in v1 ten or more times larger than the maneuver itself. As

the bending provided by a flyby is a function of the flyby v1, leveraging maneuvers

provide an economical way to influence the e�cacy of a flyby.

V-infinity leveraging decreases v1 by making the orbit around the central body

more circular, and increases v1 by making that orbit more eccentric. For exterior

leveraging a maneuver is done near apoapsis that raises periapsis to lower v1, or lowers

periapsis to increase v1. Interior leveraging uses a maneuver at periapsis to change

v1 by changing the orbit’s apoapsis. A detailed description of V-Ininfity Leveraging

and related nomenclature is provided in Sims, Longuski, and Staugler [14].

4.1 Non-Tangent V-Infinity Leveraging

Past work [14, 15, 22–24] in V-Infinity Leveraging Transfers (VILTs) has largely

focused on tangent leveraging, i.e. leveraging where the v1 vector is tangent to the

gravity-assist body’s velocity vector at one end of the transfer. For example, an

exterior VILT that reduces v1 would use a maneuver at apoapsis to raise periapsis to

the gravity-assist body’s orbital distance. Such a VILT would achieve the maximum

reduction in v1 for a given apoapsis radius. Tangent VILTs are very e�cient at

getting the maximal change in v1 for a give transfer time.
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In this application where we want to rotate the v1 vector by 180� , such tangent

leveraging may undo rotation provided by flybys before the VILT. For example, when

going from a Titan-Rhea Hohmann to a Rhea-Dione Hohmann, Rhea starts out at

periapsis of the Saturn-centered orbit and flybys are used to lower periapsis to Dione.

Exterior tangent VILTs to reduce v1 will tend to move periapsis back to Rhea and

undo the work of the flybys in lowering periapsis. This chapter will look at non-

tangent VILTs as a way to balance the larger bending provided by lower v1 against

the tendency for leveraging to sometimes retard the progress of flybys.

4.1.1 Resonance Hopping

When constructing a sequence of flybys using only one gravity-assist body, three

types of transfers between flybys are available [8, 15]. Resonant transfers are trans-

fers where the flight time between flybys is an integer multiple of the gravity-assist

body’s period, Tga. Because of this, both flybys of a resonant transfer occur at the

same location in the gravity-assist body’s orbit. Non-resonant transfers are transfers

where the flight time of the transfer is not a integer multiple of Tga but is such that

the spacecraft is still able to re-encounter the gravity-assist body. The flybys of a

non-resonant transfer occur at di↵erent locations in the gravity-assist body’s orbit.

Backflip transfers (also referred to as pi-transfers), are a special case of a non-resonant

transfer where the two flybys occur half a rev apart in the gravity-assist body’s orbit.

Because of the locations of the flybys, both resonant transfers and backflip transfers

may be inclined, but non-resonant transfers must be in the plane of the gravity-assist

body’s orbit.

Compared to non-resonant and backflip transfers, resonant transfers are simple to

analyze, as their period is simply (N/M)Tga, where N is the number of gravity-assist

body revs, and M is the number of spacecraft revs. Because of this, a special kind

of tour called resonance hopping [8] is often used to estimate how quickly a given

gravity-assist body can change the spacecraft’s orbit around a central body. For a
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set of resonant transfers, labeled N :M , the flight time of a resonance hopping tour is

simply the sum of the N ’s for each resonant orbit multiplied by Tga. A gravity-assist

body with strong gravity can hop between resonant orbits with low values of N using

only a few flybys, while a body with weaker gravity often forces the choice of high N

resonances which result in longer flight times.

Figure 4.1 illustrates how a resonance hopping tour may be constructed using

Rhea. This figure shows resonant transfers as vertical lines on a plot of orbit resonance

(i.e. Tsc/Tga) versus flyby v1. As flyby v1 approaches 0, the spacecraft orbit cannot

be much di↵erent from the gravity-assist body’s orbit and certain resonances become

unavailable (hence the cessation of the vertical lines for lower v1’s). In Fig. 4.1 it

is important to note the gaps around certain low N resonances such as 1:1, 2:1, 1:2,

and 3:2. This consequence of the spacing of rational numbers on the number line can

make it di�cult to find resonance to hop to near these low N resonances.

The shaded area in Fig. 4.1 shows all resonances that can be either reached from

a 1:1 resonance or that may reach a 1:1 resonance with a single Rhea flyby of 50 km

or higher. The width of this region is determined by the bending from a flyby, which

is a function of v1 as shown in Eqn. 4.1:

sin

✓
�

2

◆
=

µga

µga + rpfbv2
1

(4.1)

and by the pump angle (↵) required for a given resonance. Pump angle is discussed

in the next section, and it is also a function of v1. For flybys that do not change

inclination (isc), the change in pump angle is simply the bending angle.

From Fig. 4.1, we see that the resonances with the lowest N that can reach a 1:1

are 8:9 and 8:7. To hop between a 1:1 and a 8:9 or 8:7 requites a v1 between 0.4

km/s and 0.8 km/s. If the spacecraft v1 is out side of this range, a longer transfer

with a higher N is required such as a 10:11 or a 12:11.

Figure 4.2 show a similar plot for Titan where the shaded areas represents regions

that can hop from or to a 3:4 resonance with a single 850 km flyby. To hop between



68

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

1
9
:1

0

1
7
:1

0

1
3
:1

0

1
1
:1

0

9
:1

0

7
:1

0

1
7
:9

1
6
:9

1
4
:9

1
3
:91
1
:9

1
0
:9

8
:9

7
:9

5
:9 1

5
:8

1
3
:8

1
1
:8

9
:8

7
:8

5
:8

1
3
:7

1
2
:71
1
:7

1
0
:7

9
:7

8
:7

6
:7

5
:7

4
:7

1
1
:6

7
:6

5
:6

9
:5

8
:5

7
:5

6
:5

4
:5

3
:5

7
:4

5
:4

3
:4

5
:3

4
:3

2
:3

3
:2

1
:2

2
:1

1
:1

Rhea Resonance (n:m)

V
−

In
fi
n
it
y
 [
k
m

/s
]

Figure 4.1: Resonances available to/from 1:1 Rhea resonance with 50 km flyby
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Figure 4.2: Resonances available to/from 3:4 Titan resonance with 850 km flyby
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Figure 4.3: Resonances available to/from 7:5 Dione resonance with 50 km flyby

a 2:1 and a 3:4 requires a v1 of ⇠1.6 km/s, and to hop between 1:2 and 3:4 requires

a v1 between ⇠2.4 and ⇠2.7 km/s. This means that a Titan resonance hoping tour

from 2:1 to 3:4 to 1:2 would require changing the spacecraft v1. For Titan, where

the shaded region covers most of the plot, it is probably better to choose a di↵erent

sequence of resonances that don’t require a change in v1. However, for smaller moons

where the shaded area is much smaller, changing the choice of resonances may be a

larger penalty. Consider Fig. 4.3, which shows hopping from or to a 7:5 resonance

with a 50 km flyby. For a v1 of ⇠1.3 km/s a hop from 7:5 to 4:3 is possible. But

without this v1, the hop must be to 11:8 and then 4:3, a flight time di↵erence of

11 Dione revs (30 days). Being able to modulate the spacecraft v1 to make e�cient

resonance hops would enable savings in flight time at many such places in a tour.

This is the motivation for the development of non-tangent VILTs that is discussed in

the following sections.
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4.1.2 Phase-Free Leveraging

To simplify the analysis, we may assume that the leveraging maneuver occurs at

an apse and is tangent to the orbital velocity. The maneuver will be at apoapsis for

exterior leveraging and at periapsis for interior leveraging. This assumption limits

the e↵ect of the leveraging maneuver to changing an orbit’s eccentricity and does not

rotate the orbit. I will also assume that leveraging transfers are in the plane of the

gravity-assist body’s orbit (i.e. isc = 0).

If we introduce kei as a constant that is +1 for exterior leveraging and �1 for

interior leveraging, we can write the radius of the apse where the leveraging maneuver

occurs, the leveraging apse, rla as:

rla = asc(1 + keiesc) (4.2)

which can be solved for eccentricity:

esc = kei

✓
rla

asc

� 1

◆
(4.3)

and then substituted into Eqn. 2.130 to yield a quadratic in rla and asc (where CT iss

is a function of v1 given by CT iss = 3 �

⇣
v1
vc

⌘2

:

4ascr
2
la � 8a2

scrla + a2
scC

2
T iss � 2ascCT iss + 1 = 0 (4.4)

This quadratic then yields two roots for rla. One corresponding to rla > asc (i.e. rla

at apoapsis) and the other to rla < asc (i.e. rla at periapsis). Therefore rla for a given

asc and v1 is:

rdv = asc + kei

r
a2

sc �

1

4
asc(3 � v2

1)2 +
1

2
(3 � v2

1) �

1

4asc

(4.5)

We now can start with a v0
1 before the leveraging maneuver and compute rla as a

function of a0
sc or T 0

sc or ↵0 of the pre-maneuver orbit. For the post maneuver orbit,
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rla stays the same and we can either use Eqn. 4.3 and Eqn. 2.65 to compute v00
1 as a

function of a given a00
sc or use Eqn. 4.4 to compute a00

sc from v00
1 . However, another

approach is to specify the radius of the apse without the maneuver, i.e. the vacant

apse, rva:

rva = 2asc � rla (4.6)

If rla and r00
va are known, we may use Eqn. 4.6 to solve for a00

sc and v00
1 from Eqn. 2.65.

If r0
va = r00

va there is no leveraging maneuver and the transfer is ballistic. If either r0
va

or r00
va are equal to one, we have the case of tangent leveraging.

After we have solved for a0
sc and a00

sc, the �V of the leveraging transfer is given

by:

�V =

�����

s
2

rla

�

1

a0
sc

�

s
2

rla

�

1

a00
sc

����� (4.7)

We now can calculate phase-free VILTs specified by a parameter before the VILT:

{v0
1 or r0

va}, a parameter after the VILT: {v00
1, r00

va}, and a free parameter: {rla, a
0
sc, T 0

sc,

or ↵0
}. These VILTs are phase-free because we have not yet enforced a constraint that

the VILT must encounter the gravity-assist body both before and after the leveraging

maneuver. Adding this constraint will allow us to specify a VILT by a combination of

spacecraft and gravity-assist body revs for a transfer instead of {rla, a
0
sc, T 0

sc, or ↵0
}.

4.1.3 Leveraging Returns

In order to have a VILT return to the gravity-assist body, we must match the flight

time of the spacecraft transfer (ttrans;sc) with the time that it takes the gravity-assist

body to travel between the encounter locations (ttrans;ga). We must also realize that

VILTs can correspond to various numbers of gravity-assist body revolutions, various

numbers of spacecraft revolutions, and that the maneuver could occur on any of the

spacecraft orbit revs. In addition, the flybys on either end of a VILT can either be
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Figure 4.4: Leveraging with Inbound and Outbound flybys

inbound (i.e. before periapsis) or outbound (i.e. after periapsis) as shown in Fig. 4.4.

As shown in Fig. 4.4, both exterior and interior VILTs may be inbound to outbound

(IO), inbound to inbound (II), outbound to inbound (OI), or outbound to outbound

(OO). For the case where there is no �V , IO and OI VILTs become ballistic non-

resonant transfers, and II and OO VILTs become ballistic resonant transfers.

For each of the 8 types of VILTs that may be derived from Fig. 4.4 (i.e. {interior

or exterior} and {IO,II,OI, or OO}), there are solutions for various combinations of

gravity-assist body integer revs (N), spacecraft integer revs (M), and the spacecraft

rev number of the maneuver (Lm). To denote these di↵erent cases we will use a

modified versions the naming convention of Sims et al. [14]:

{int or ext}-{IO,II,OI, or OO} N :M(Lm) (4.8)

Examples of this naming convention would be: int-OI 2:3(1), ext-OO 1:1(0), int-IO

0:0(0), ext-II 12:11(7), etc.



73

We can enforce the return constraint by matching the flight time between flyby

locations of the spacecraft (ttrans;sc) to that of the gravity-assist body (ttrans;ga). To

find ttrans;sc we start by solving for the eccentric anomaly:1

Esc = kio cos�1

✓
asc � 1

escasc

◆
(4.9)

where kio = sign(fenc) is +1 for an outbound encounter and �1 for an inbound

encounter. From Esc we can now get the time from periapsis of the encounter in the

spacecraft’s orbit (where Tsc = (asc)3/2):

⌧sc =
Tsc

2⇡
(Esc � esc sin(Esc)) (4.10)

By thoughtful inspection of Fig. 4.4 we can derive the following relations for ttrans;sc

for the 8 kinds of VILTs:2

exterior: IO,II, or OO ttrans;sc = (⌧ 00
sc � ⌧ 0

sc) + T 0
sc(Lm + 1/2) + T 00

sc(M � Lm � 1/2) (4.11)

exterior: OI ttrans;sc = (⌧ 00
sc � ⌧ 0

sc) + T 0
sc(Lm + 1/2) + T 00

sc(M � Lm + 1/2) (4.12)

interior: O,II, or OO ttrans;sc = (⌧ 00
sc � ⌧ 0

sc) + T 0
scLm + T 00

sc(M � Lm) (4.13)

interior: OI ttrans;sc = (⌧ 00
sc � ⌧ 0

sc) + T 0
scLm + T 00

sc(M � Lm + 1) (4.14)

By using kei and Ma we can simplify the four equations above into one equation:

ttrans;sc = ⌧ 00
sc � ⌧ 0

sc + T 0
sc

✓
Lm +

1 + kei

4

◆
+ T 00

sc

✓
Ma � Lm �

1 + kei

4

◆
(4.15)

1For the one hyperbolic VILT, an M = 0 IO transfer, the analogous equations for hyperbolic
anomaly would have to be used instead of Eqn. 4.9 and Eqn. 4.10.
2Remember that ⌧

sc

has the same sign as k
io

.
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where Ma is the number of spacecraft revs counted by apoapsis crossings and is related

to M as follows:

Ma =

8
><

>:

M if IO,II, or OO

M + 1 if OI
(4.16)

Equation 4.15 accounts for the time of flight of the spacecraft. The next part is

to account for the time of flight of the gravity-assist body. Since we have assumed

the gravity-assist body to be in a circular orbit we can find its flight time from the

angle between the two encounters. The true anomaly of each encounter is given by:

fsc = kio cos�1

✓
1

esc

(asc(1 � esc
2) � 1)

◆
(4.17)

Then the flight time of the gravity assist body is:

ttrans;ga = Na +
1

2⇡
(f 00

sc � f 0
sc) (4.18)

where, like Ma, Na is introduced to cover the OI case. Here Na is the number of times

that the gravity-assist body crosses the line between the central body and spacecraft

apoapsis. Na is given by:

Na =

8
><

>:

N if IO,II, or OO

N + 1 if OI
(4.19)

Since we need to use Kepler’s equation to get ttrans;sc we cannot start from the

constraint ttrans;sc = ttrans;ga and work backwards to find the VILT. Rather we have

to iteratively guess phase-free VILTs until this constraint is met. We do this by

guessing one of the free parameters of the phase free problem, {rla, a
0
sc, T 0

sc, or ↵0
},

and iterating to find the value where:

ttrans;sc = ttrans;ga (4.20)
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Each of the solutions to Eqn. 4.20 gives a VILT specified by the naming convention

in Eqn. 4.8.

4.1.4 Tisserand Graph of Non-Tangent Leveraging

A Tisserand Graph [18, 23, 24, 37] may be used to better understand how VILTs

help us change the central body orbits we can access from flybys. It can also help

us see the family of VILTs specified by Eqn. 4.8. Figure 4.5 is an example of such a

Tisserand graph.

Figure 4.5: Example of external VILT

Figure 4.5 is a Tisserand Graph showing apoapsis radius (ra) versus periapsis

radius (rp). Each point on the graph represents an orbit around the central body.

Since Tisserand’s criterion remains constant through flybys, we may plot contours

with constant values of Tisserand’s criterion or v1 (CT iss = 3 � v2
1) to represent

how flybys can change the orbit with respect to the central body. We may also plot

other contours to show how VILTs change the orbit with respect to the central body,

and by comparison with the CT iss or v1 contours we may also see how the VILTs

change the flyby v1. In Fig. 4.5, the VILT is shown connecting the orbit before the

leveraging maneuver with v0
1 and r0

va to the orbit after the leveraging maneuver with

v00
1 and r00

va, resulting in a reduction in v1. Since for exterior leveraging the apoapsis
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radius (i.e. rla = ra) doesn’t change during the maneuver, the VILT follows a line

of constant apoapsis on this Tisserand graph. The light blue line represents other

VILTs that could go to di↵erent values of v00
1 and r00

va.

In Fig. 4.5, a gravity assist goes from the spacecraft orbit at point A to the orbit

at point B. The VILT then goes from the orbit at point B to the orbit at point C,

which then re-encounters the gravity-assist body. Finally another flyby changes the

spacecraft orbit from point C to point D. This orbit at point D could be the start of

another VILT, a ballistic transfer, a transfer to another moon, or just an orbit around

the central body that is not intended to return to the gravity-assist body. In this

manner we may depict the sequence of VILTs and ballistic transfers in a gravity-assist

tour on a Tisserand graph to show both how the flyby v1 changes as well as the orbit

around the central body.

Notice in Fig. 4.5, that if the VILT were to go to another point on the VILT’s

blue line with a v1 between v00
1 and c0

1, point B would have to move to the right

so that it could be connected to the blue line with a constant ra, and less bending

would be needed by the flyby from A to B. The point where the blue line crosses the

v0
1 contour is a ballistic transfer. Between this point and point A are VILTs that

require less bending than the ballistic transfer. These VILTs are important when we

construct tours with low mass moons than cannot provide much bending. Even if

we do not have enough bending to reach a desired ballistic non-resonant or resonant

transfer, there may be a related VILT that we could reach. In the case shown, these

low-bending VILTs decrease v1. However, if our starting point were further right on

the v0
1 contour, these low-bending VILTs would increase v1.

4.2 Example Leveraging Tour to Enceladus

We may now use the techniques in the previous sections to design an example

leveraging tour (i.e. a tour with VILTs) that starts from a Saturn arrival condition

similar to that of the Titan Saturn System Mission (TSSM) study [38] and reaches
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Enceladus orbit. This tour is intended to be an example of how leveraging techniques

can improve upon the Enceladus orbit insertion from a direct Titan to Enceladus

transfer and is not intended to represent an optimal solution to the problem. I do

not wish to tie this example solution to a specific epoch and will not consider the

phasing of the transfer orbits between the moons. Neglecting these transfer orbits

will add a small amount of additional flight time to our estimates (on the order of

a few revs of the moons involved). However, the additional �V from these transfers

will be negligible as these transfers would be pretty much ballistic.

Table 4.1: Initial Saturn Orbit

TSSM SOI 746 m/s Initial rp 1.2 RS

Pre-SOI Mass 5814 kg Initial ra 200 RS

Flight Time to SOI 9 yrs Initial Tsc 180 days

Table 4.1 gives the Saturn arrival conditions for the TSSM study. [38] We will use

this as a starting point for designing our trajectory to Enceladus and for comparison

with other methods. On arrival at Saturn, the TSSM mission uses a 746 m/s Saturn

Orbit Insertion (SOI) maneuver to enter an initial 1.2 Saturn radii by 200 Saturn

radii orbit. From this orbit, we use a 564 m/s Periapsis Raise Maneuver (PRM) to

raise the periapsis to Titan’s orbit and achieve a v1 of 1.46 km/s. Table 4.2 shows

the three flybys and one leveraging maneuver used to transition from this orbit to a

Titan-Rhea Hohmann transfer. Figure 4.6 shows these flybys and the leveraging on

a Tisserand graph.

Table 4.3 and Fig. 4.7 show the 14 Rhea flybys and 8 leveraging maneuvers needed

to get from the Titan-Rhea Hohmann to the Rhea-Dione Hohmann. This sequence of

VILTs and ballistic transfers requires 9.5 months and 251 m/s. The minimum flyby

altitude allowed for Rhea (as well as Dione and Tethys) is 50 km. Some of these en-

counters are very close in time from an operational perspective, and a future mission’s

ground system may not be able to handle flybys closer than 9 days. However, for this
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Table 4.2: Titan Transfers

Flyby ttrans Altitude Transfer Type v0
1 v00

1 �V
[d] [km] N:M(L) [km/s] [km/s] [m/s]

Titan-1 61.3 2290 ext-OI 2:1(0) 1.46 1.27 27.4
Titan-2 21.3 3010 OI 1:1 1.27 1.27 0.0
Titan-3 — 15220 transfer to Rhea

Figure 4.6: Titan leveraging

example, I chose to design a tour without presupposing any particular constraints

from the ground system with the assumption that such a tour could be modified by

adding transfers with multiple spacecraft revs if needed (e.g. 1:1 transfers could be

replaced with 2:2 or 3:3 transfers).

In Table 4.3, flybys Rhea-3 and Rhea-9 are particularly interesting in that they

increase v1. If the goal of this sequence of flybys is to lower v1 from the initial 1.75

km/s to near the Rhea-Dione Hohmann’s 0.73 km/s, why is �V used to increase v1?

The answer can be found in the earlier discussion of Fig. 4.5; v1 was increased in

order to reach a low flight time VILT. The flybys before the VILT were already at

or near the 50 km limit and could not provide enough bending to reach the ballistic

transfer. By increasing v1, less bending was needed to reach the desired VILT.
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The Dione transfers are shown in Table 4.4 and Fig. 4.8, taking 3.5 months and 90

m/s. The Tethys transfers in Table 4.5 and Fig. 4.9 then go from Dione to Enceladus

in 4.5 months with 28 m/s. Finally, in Table 4.6 and Fig. 4.10, 4.5 months and 96

m/s of Enceladus leveraging is used to reduce the Enceladus v1 from 800 m/s to 300

m/s. Due to Enceladus’ small mass, we allowed the minimum flyby altitude during

this segment to decrease to 40 km initially and then to 25 km at the end. Although

we believe that such low flybys should be possible at Enceladus, a future project may

find it preferable to do orbit insertion from a higher v1 rather than develop a flight

system and ground system capable of such low flybys.

Figure 4.7: Rhea leveraging

Table 4.7 shows the combined �V of these transfers along with the TSSM SOI �V

and a PRM �V calculated from the TSSM initial orbit. The Enceladus orbit insertion

is calculated with a 10% estimate of gravity losses. Tour statistical �V is estimated

at 5 m/s per flyby. The table also shows �V totals for two alternate strategies

for reaching Enceladus: inserting directly from a Titan-Enceladus Hohmann, and

inserting directly from the initial TSSM orbit. The �V for each strategy is then used

with the TSSM bi-prop Isp of 323 sec. to calculate a mass inserted into Enceladus

orbit assuming the TSSM Saturn arrival mass of 5814 kg. From Enceladus orbit,

the spacecraft may use additional �V for orbit maintenance, orbit changes, and/or



80

Figure 4.8: Dione leveraging

Figure 4.9: Tethys leveraging
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Figure 4.10: Enceladus leveraging

Table 4.3: Rhea Transfers

Flyby ttrans Altitude Transfer Type v0
1 v00

1 �V
[d] [km] N:M(L) [km/s] [km/s] [m/s]

Rhea-1 17.6 140 OI 2:1 1.75 1.75 0.0
Rhea-2 17.4 4910 OI 2:1 1.75 1.75 0.0
Rhea-3 50.4 50 ext-IO 11:6(2) 1.75 1.76 1.4
Rhea-4 38.7 470 OI 7:4 1.76 1.76 0.0
Rhea-5 37.1 50 ext-IO 8:5(4) 1.76 1.77 2.0
Rhea-6 19.6 60 ext-OI 3:2(1) 1.77 1.21 99.1
Rhea-7 37.4 50 ext-OI 7:5(4) 1.21 1.02 29.7
Rhea-8 23.5 510 ext-OI 4:3(0) 1.02 0.88 24.1
Rhea-9 31.4 50 ext-OI 6:5(0) 0.88 0.90 5.0
Rhea-10 6.5 60 ext-IO 1:1(0) 0.90 0.99 35.7
Rhea-11 6.2 240 OI 1:1 0.99 0.99 0.0
Rhea-12 30.1 80 int-IO 6:7(5) 0.99 0.75 53.6
Rhea-13 21.4 200 IO 4:5 0.75 0.75 0.0
Rhea-14 — 6990 transfer to Dione
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Table 4.4: Dione Transfers

Flyby ttrans Altitude Transfer Type v0
1 v00

1 �V
[d] [km] N:M(L) [km/s] [km/s] [m/s]

Dione-1 16.8 100 ext-OI 5:4(3) 0.90 0.82 12.0
Dione-2 19.3 160 ext-OI 6:5(0) 0.82 0.70 21.5
Dione-3 25.2 110 IO 9:8 0.70 0.70 0.0
Dione-4 3.9 60 ext-IO 1:1(0) 0.70 0.77 30.4
Dione-5 3.8 220 OI 1:1 0.77 0.77 0.0
Dione-6 26.5 50 int-IO 9:10(9) 0.77 0.70 17.9
Dione-7 16.7 180 int-OI 6:7(6) 0.70 0.65 8.4
Dione-8 — 970 transfer to Tethys

Table 4.5: Tethys Transfers

Flyby ttrans Altitude Transfer Type v0
1 v00

1 �V
[d] [km] N:M(L) [km/s] [km/s] [m/s]

Tethys-1 13.4 790 OI 6:5 0.77 0.77 0.0
Tethys-2 13.5 110 ext-IO 7:6(0) 0.77 0.70 12.1
Tethys-3 17.3 60 IO 9:8 0.70 0.70 0.0
Tethys-4 27.0 50 IO 14:13 0.70 0.70 0.0
Tethys-5 2.7 50 IO 1:1 0.70 0.70 0.0
Tethys-6 2.9 510 OI 1:1 0.70 0.70 0.0
Tethys-7 2.6 480 OI 1:1 0.70 0.70 0.0
Tethys-8 25.8 50 int-IO 13:14(2) 0.70 0.67 10.3
Tethys-9 17.3 150 OI 9:10 0.67 0.67 0.0
Tethys-10 14.7 130 int-IO 7:8(7) 0.67 0.63 5.3
Tethys-11 — 270 transfer to Enceladus
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Table 4.6: Enceladus Transfers

Flyby ttrans Altitude Transfer Type v0
1 v00

1 �V
[d] [km] N:M(L) [km/s] [km/s] [m/s]

Enceladus-1 11.0 40 OI 7:6 0.80 0.80 0.0
Enceladus-2 21.9 30 ext-OI 15:13(3) 0.80 0.82 3.2
Enceladus-3 12.3 40 ext-OI 8:7(5) 0.82 0.75 13.1
Enceladus-4 23.5 40 ext-IO 17:15(8) 0.75 0.60 25.5
Enceladus-5 13.7 40 OI 9:8 0.60 0.60 0.0
Enceladus-6 15.1 40 ext-OI 10:9(8) 0.60 0.50 16.6
Enceladus-7 16.4 30 ext-OI 11:10(0) 0.50 0.52 2.0
Enceladus-8 19.2 30 ext-OI 13:12(11) 0.52 0.37 25.6
Enceladus-9 20.6 25 ext-OI 14:13(1) 0.37 0.30 10.4

Table 4.7: Delta-V Comparison

Leveraging Tour Titan-Encel. SOI-Encel.
SOI [m/s] 746 746 746
PRM [m/s] 564 546 159
Titan Leveraging [m/s] 27 — —
Rhea Leveraging [m/s] 251 — —
Dione Leveraging [m/s] 90 — —
Tethys Leveraging [m/s] 28 — —
Encel. Leveraging [m/s] 96 — —
Tour Statistical �V Est. [m/s] 225 20 —
Encel. Orbit Insertion [m/s] 242 3,933 5,380
Total �V [m/s] 2,269 5,245 6,285
Encel. On-Orbit Mass [kg] 2,839 1,109 798
TOF from SOI [yr] ⇠3 ⇠0.8 ⇠0.5
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for landing on Enceladus, but this �V is not accounted for in this analysis. Finally,

for each strategy, an approximate flight time is estimated that does not account for

phasing orbits that may be needed to transfer between the moons.

This example leveraging tour places allows an Enceladus orbiter 2.5⇥ of the mass

of the Titan-Enceladus Hohmann trajectory and 3.5⇥ of the mass of a direct insertion

after SOI. It does this with an increase of flight time to 3 years. Assuming a 9 year

flight time to Saturn like the TSSM trajectory, that would leave a mission with up

to 3 years at Enceladus before reaching the 15 year spacecraft design lifetime typical

for outer planet missions. With longer flight time also comes exciting science from

14 Rhea flybys, 8 Dione Flyby, and 11 Tethys flybys, all of which are at much lower

Encounters speeds than the handful of Cassini flybys of these bodies. Furthermore,

this is just one example tour and other tours exist with di↵erent combinations of

flight time and �V [39].
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CHAPTER 5. ASTEROID REDIRECTION

NASA’s Asteroid Redirect Mission (ARM) [26, 27, 40, 41] study initially considered

two mission scenarios: redirection of a small (<s12 m) asteroid into a Lunar Distant

Retrograde Orbit (DRO) or retrieval of a 2-3 m boulder from a larger asteroid and

bringing that into the same Lunar DRO [42]. The techniques in this chapter are

applicable to the first ARM scenario: redirection of an entire asteroid. Although

NASA chose the second scenario for ARM in 2015, the redirection of an entire asteroid

is still a very interesting problem in astrodynamics.

Various concepts for asteroid capture or redirection have been studied over the

years, [43–49] but have not been feasible with current technology. However, a 2011

study [26, 27] by the Keck Institute for Space Studies (KISS) showed that it is now

possible to capture a small (but large enough to be detected) asteroid and place it

into Earth or Lunar orbit using recent developments in high-power Solar Electric

Propulsion (SEP) technology, upgrades to NASA’s asteroid detection system, and

new astrodynamics techniques. [40, 41] NASA’s current ARM concept derives from

this study. In addition, work in the NASA ARM study and in a second 2014 KISS

study on asteroid redirection technology found that the technologies developed by

ARM could also be applied to redirect asteroids onto useful heliocentric orbits such as

Earth-Mars cyclers and Earth backflip orbits. This chapter will present the dynamical

criteria that can be used to identify which asteroids could be redirected into the Earth-

Moon system or onto other heliocentric orbits for relatively low �V (<s200 m/s).

5.1 The Asteroid Redirection Mission Concept

The ARM concept is intended as a pathfinder mission for human interplanetary

spaceflight. ARM consists of an Asteroid Redirect Robotic Mission (ARRM) and
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an Asteroid Redirect Crew Mission (ARCM). In the entire asteroid redirection case,

ARRM would place an asteroid into lunar orbit where it will be visited by the ARCM,

the first of a series of Lunar “Proving Ground” missions that would develop the

operational methods and life support systems for interplanetary flight. The ARRM

vehicle would use a 40 kW SEP system that could be readily scaled up to the 100-200

kW power levels that would be needed by human Mars missions. [50, 51]

Figure 5.1 shows the timeline for the ARRM small asteroid option. [41] The ARRM

vehicle could launch on an SLS, Falcon Heavy, Atlas V, or Delta IV Heavy. If launched

on an Altas V, a low thrust spiral would be used to reach the Moon. Other launch

vehicles allow direct launch to a Lunar Gravity Assist (LGA) that would inject the

vehicle onto an interplanetary trajectory to the asteroid to be redirected. This as-

teroid would be chosen because it has a natural Earth close approach in the desired

time frame (2023-2024) that could be redirected to a Lunar Gravity Assist (LGA)

that would capture the asteroid.

The ARV would use SEP to reach the asteroid and rendezvous with it. At the

asteroid, it would capture the asteroid in a large inflatable bag designed to contain

the asteroid if it is a rubble pile or otherwise has low cohesion. The SEP system would

then be used to redirect the asteroid and to target an LGA that would capture the

asteroid into a loose Earth orbit. From there, solar perturbations and a second LGA

would be used to place the asteroid into a Lunar Distant Retrograde Orbit (DRO).

This initial DRO would only have a lifetime of a year or two, but small maneuvers

(< 30m/s) with the SEP system over several months could be used to move the

asteroid into a DRO with a lifetime of several hundred years. [41]

Alternate Redirection Technologies

The capture system design for the ARM small asteroid redirection mission scenario

was to deploy a 12-15 m inflatable bag which would surround the asteroid and then be

drawn tight to the asteroid to anchor the spacecraft to the asteroid. The spacecraft
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This ambitious mission concept is a radically different scale from past “sample return” concepts and requires 
innovative new mission design techniques to accomplish.  To establish feasibility, the ARRM Mission Design team 
has developed a design that combines many astrodynamics techniques developed in the past few years: low thrust 
trajectory optimization, low-energy transfers, asteroid proximity operations, gravity assists, and n-body system orbit 
design.  The ARRM is an entirely new class of mission that could benefit greatly more research into new 
astrodynamics techniques.   This paper details the first iteration of the mission design for the ARRM concept in 
hopes of motivating such research. 

II. The ARRM Mission Design 
The ARRV spacecraft is designed to return an asteroid with a mass of up to 1000 t (106 kg) to the Earth-Moon 

system. At the time of asteroid capture, the wet mass of the ARRV would be in the range 7 t to 10 t depending on 
how much propellant would be expended getting to the asteroid. This means that the amount of propellant that 
would be needed for a given  ΔV increases by a factor of 100 after the asteroid is captured. This scaling drives the 
mission design to minimize the post-capture ΔV. It is also why SEP is enabling for the ARM concept. 

A nominal ARRM would consist of the following seven mission phases as indicated in Figure 1: 1) Launch & 
Earth Escape Trajectory; 2) Go To Asteroid Leg; 3) Asteroid Rendezvous & Capture; 4) Asteroid Fetch Leg; 5) 
Lunar Endgame; 6) Storage Orbit; 7) Crew Access.  

The design drivers that govern the trajectory performance include the asteroid parameters (mass, v∞, and Earth 
encounter geometry), the SEP performance parameters (Isp, Power, and efficiency), and launch vehicle performance 
capabilities. Designing the SEP module with higher Isp would require less propellant for the same maneuver than a 
lower Isp system at the cost of increased time. Increasing the power to the thrusters increases thrust and would lower 
the time to perform these maneuvers. A larger capability launch vehicle allows either more propellant mass to be 
sent (good for lower Isp systems) or launch to a higher energy trajectory that reduces flight time (good for higher Isp 
and/or lower power systems). 

It is very difficult to estimate the mass of a non-binary asteroid from ground-based observations. Currently, the 
strategy of the ARM mission is to design the flight system and trajectory to accommodate the 99% probability upper 
bound estimate of the asteroid mass. Because mass estimates for even a well-characterized asteroid could have a 
residual uncertainty of an order of magnitude, a design for returning a 1000 t asteroid could end up returning a 
significantly smaller object. 

 
 

 
Figure 1. Mission Timeline 

Figure 5.1: Mission timeline for ARM small asteroid redirection concept

would use its monopropellant reaction control system to de-spin the asteroid and

rotate it to the proper attitude for thrusting. It would then use the SEP system to

apply the redirection �V to the asteroid.

Although this system works for small asteroids, it is not likely scalable to much

larger asteroids because larger bag sizes are di�cult to test on the ground, and the

propellant needed to de-spin a larger asteroid could be prohibitive. Therefore, a

successor to the ARM vehicle may employ new methods to redirect larger asteroids.

Two promising technologies that could allow redirection of an asteroid without contact

with the surface or the need to de-spin the asteroid are ion beam deflection [52] and

laser ablation. [53] Ion beam deflection applies impulse to an asteroid by impinging

the plume from an electric thruster on an asteroid and a second propulsion system

contracts the thrust on the spacecraft to maintain position relative to the asteroid.

For the plume impingement, gridded ion thrusters are preferred because they produce

more focused beams than Hall e↵ect thrusters. The technique of laser ablation would

impart impulse on an asteroid with a high-power laser that vaporizes spots on the
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surface. Although currently a less mature technology than ion beam deflection, laser

ablation holds promise as potentially a more e�cient way to redirect larger asteroids.

5.2 Asteroid Redirection to Capture

Asteroids with v1 magnitude less than 2.1 km/s and a declination less than 15�

may be captured by one or more LGAs, provided they can be targeted to the proper

Lunar flyby aim-point. For asteroids with higher v1 declinations, Earth flybys could

be used to lower the declination. For asteroids with higher v1 magnitudes, low-thrust

double Earth-Moon flybys or v1 leveraging could be used to lower the v1 magnitude

to an acceptable range for capture.

5.2.1 Capture via Lunar Gravity Assist

To capture an asteroid, a Lunar gravity assist is employed to decrease the Earth-

relative energy of the return mass from a positive C3 < 2 km2/s2 to a C3 of around

-0.5 km2/s2. Figure 5.2 shows the maximum C3 that could be captured with a single

LGA depending on the v1 declination and right ascention. A C3 of 2 km2/s2 permits

asteroid capture from declinations ranging up to 30� from the ecliptic; [54] direct LGA

capture from higher energies may be achievable in special cases of in-plane arrivals

 6 

Cislunar and low-energy transfers 
The notional return scenario is to use a lunar gravity assist to decrease the Earth-relative ener-

gy of the return mass from a positive C3 < 2 km2/s2 to a C3 of around -0.5 km2/s2. 5 As shown in 
Figure 5 a C3 of 2 km2/s2 permits asteroid capture from declinations ranging up to 30 degrees 
from the ecliptic. Capture from higher energies are achievable in the special case of in-plane arri-
vals and favorable lunar phase.6 Following lunar flyby the spacecraft transfers to the vicinity of a 
Sun-Earth L1 or L2 point to reduce the energy with respect to the Moon, so that it can then be 
transferred to a Moon-Earth L1 or L2 orbit.  The capture sequence thus uses the Moon to reduce 
energy with respect to Earth, then uses the Sun to reduce energy with respect to the Moon. A rep-
resentative trajectory that captures an asteroid from a C3 of around 2 km2/s2 to high lunar orbit is 
shown in Figure 6. 

 
Figure 5 A lunar flyby can capture an asteroid with a C3 of 2 km2/s2 into Earth orbit 

from a range of directions. 
  Once in the vicinity of the Moon there are different options for where to place the asteroid 

depending on the desired lifetime of the spacecraft. The asteroid could be transferred to Earth-
Moon L1 or L2 with minimal 'V, but the unstable dynamics in those regions require frequent sta-
tion keeping maneuvers. While the yearly 'V for station keeping is low, the frequency of maneu-
vers places additional requirements on the design lifetime of the spacecraft. Alternatively, the 
spacecraft can spiral down to a high lunar orbit, where the end-of mission scenario would allow 
the returned mass to ultimately crash into the moon.  The transfer to loose lunar orbit requires 
around 50 m/s 'V which translates to an additional 1.5 t of propellant and a year of thrusting fol-
lowing capture of a 1,000 t object. The lifetime of this orbit is on the order of a year, which sig-
nificantly decreases the demand for station keeping. If the asteroid is required to remain in orbit 
passively, then it could be placed in a distant retrograde orbit (DRO) around the moon for approx-
imately 100 m/s additional 'V. This option requires two extra years of thrusting before reaching 
the storage orbit, but allows the asteroid to remain uncontrolled in the vicinity of the Moon for 
several decades.  

 

Capture C3, km2/s2 

Figure 5.2: Lunar Gravity Assist (LGA) performance [54]
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and favorable lunar phase. Multiple LGAs may also allow capture from a C3 has high

as 4 km2/s2. [54]

5.2.2 The Dynamical Filter Using Tisserand’s Criterion

An asteroid’s Tisserand parameter is most nearly the Jacobi constant when the

object is farthest from the secondary body (i.e. Earth). If we calculate the Tisserand

parameter from the oscillating orbit elements of an asteroid (relative to the Earth-Sun

barycenter) when it is farthest from the Earth, we can use Eqn. 2.65 to caluclate a v1

for that asteroid that will not change without interaction from other planets or non-

gravitational forces. Therefore this v1 is a very good predictor of the v1 an asteroid

would have when it encounters the Earth. This works even if the asteroid does not

currently cross the Earth’s orbit and would need to follow a low-energy manifold to

reach the Earth.

The Tisserand parameter can be graphed [18] as a function of parameters derived

from orbit elements (e.g. period and periapsis or periapsis and apoapsis) to design

spacecraft trajectories. Campagnola et al. [37] have proposed a Tisserand-Poincaré

graph that allows the design of both gravity-assist and low-energy manifold trajecto-

ries. Figure 5.3 is such a Tisserand-Poincaré graph applied to the problem of finding

asteroids that could be redirected to an LGA capture.

Figure 5.3 shows all known Near Earth Asteroids (NEAs) with a perihelion from

0.7 to 1.1 AU and an aphelion from 0.9 to 1.5 AU. The open red circles represent

asteroid estimated to be 15 m or larger and the closed circles represent asteroids

smaller than 15 m. The green area shows objects that have a Tisserand parameter

corresponding to a v1 of 1.8 km/s or less and cross the Earth’s orbit. The yellow area

shows objects that come close but do not cross the Earth’s orbit and have a Tisserand

parameter corresponding to a v1 of 2.6 km/s or less. The black diagonal lines show

the synodic period of the asteroids. Asteroids in the green area could be returned

with minimal �V to redirect a natural Earth encounter to an LGA. Asteroids in the
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yellow area may also be returnable, but would require extra �V to either lower their

v1 or to modify the asteroid orbit so that it has an Earth encounter. Asteroids in the

white region either have a v1 too high for LGA capture or have orbits that cannot

be modified to cross the Earth’s without large �V.

5.2.3 Redirection of High v1 Asteroids

Even if an object naturally encounters Earth with a higher v1 than could be

captured directly with a lunar gravity, tens or even hundreds of tonnes of asteroid

mass could still be captured into orbit. In this case an additional flyby of Earth

followed by 1-2 years of thrusting can e�ciently lower the Earth-approach C3 to

around 2 km2/s2, enabling lunar-assisted capture. Two example trajectories are

shown in Fig. 5.4, where 1.5 yr (left) or 2.1 yr (right) of SEP thrusting leverages the

C3 with respect to Earth from 16 km2/s2 down to 2 km2/s2. The transfer duration
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from Earth flyby to lunar capture does not vary significantly for di↵erent Earth flyby

v1.

As indicated by the gold lines in Fig. 5.5, the �V to reduce the flyby v1 to enable

LGA capture is significantly less using an Earth flyby followed by SEP thrusting than

attempting to directly reduce the approach velocity. The mass curves in Fig. 5.5 are

computed assuming a 5 t spacecraft, 40-kW SEP system (P0), 90% duty cycle (d),

55% e�ciency (⌘) at 2000 s Isp, or 60% e�ciency at 3000 s Isp, and that the return

mass is maximized by thrusting during the entire transfer time (t). It is then possible

to estimate the maximum return mass via the following equations:

mprop =
2⌘dP0

(gIsp)
2 t (5.1)

mreturn =
mprop

e
�V
gIsp

� 1
� 5t (5.2)

In the case of 4-km/s v1 , 2.1 yr flight time, and 3000 s Isp, the �V is 1.65 km/s,

the propellant mass is 3.30 t and the return mass is 52 t. Equation 5.1 is only an

approximation for orbits that remain near 1 AU (such as the leveraging transfers

Even%if%an%object%naturally%flies%by%Earth%with%more%energy%(or%V∞)%than%can%be%captured%with%lunar%
gravity,%tens%or%even%hundreds%of%tonnes%of%asteroid%mass%can%still%be%captured%into%orbit.%In%this%case%an%

additional%flyby%of%Earth%followed%by%1–2%years%of%thrusting%can%efficiently%lower%the%EarthCapproach%C3%
to%around%2%km2/s2,%enabling%lunarCassisted%capture.%Two%example%trajectories%are%shown%in%Figure%1,%
where%1.5%yr%(left)%or%2.1%yr%(right)%of%SEP%thrusting%leverages%the%C3%with%respect%to%Earth%from%16%km2/s2%

down%to%2%km2/s2.%The%transfer%duration%from%Earth%flyby%to%lunar%capture%does%not%vary%significantly%for%
different%Earth%flyby%V∞.%

%
Figure'1'The'V∞'during'Earth'flyby'can'be'leveraged'down'via'SEP'thrusting'to'enable'lunar=assisted'

capture'of'high=energy'objects.'

%

As%indicated%by%the%gold%lines%in%Figure%2,%the%ΔV%to%reduce%the%flyby%V∞%to%enable%lunarCassisted%capture%

is%significantly%less%using%an%Earth%flyby%followed%by%SEP%thrusting%than%attempting%to%directly%reduce%the%

approach%velocity.%The%mass%curves%in%Figure%2%are%computed%assuming%a%5%t%spacecraft,%40CkW%SEP%
system%(P0),%90%%duty%cycle%(d),%55%%efficiency%(η)%at%2000%s%Isp,%or%60%%efficiency%at%3000%s%Isp,%and%that%

the%return%mass%is%maximized%by%thrusting%during%the%entire%transfer%time%(tof).%It%is%then%possible%to%
estimate%the%maximum%return%mass%via%equations%(1)%and%(2)%

% % (1)%

% % (2)%

In%the%case%of%4Ckm/s%V∞,%2.1%yr%flight%time,%and%3000%s%Isp,%the%ΔV%is%1.65%km/s,%the%propellant%mass%is%

3.30%t%and%the%return%mass%is%52%t.%Equation%(1)%is%only%an%approximation%for%orbits%that%remain%near%1%AU%
(such%as%the%leveraging%transfers%shown%in%Figure%1),%but%permits%the%mass%to%be%estimated%for%a%variety%

of%SEP%systems%with%different%P0%and%Isp.%In%addition,%the%returnable%mass%can%be%estimated%for%different%
propellant%throughput%constraints%via%Eq%(2).%

Earth%flyby:%
V∞%=%4km/s%
TOF%=%0%d%

Lunar%Capture:%
V∞%=%1.4km/s%
(wrt%Earth)%
TOF%=%540%d%

Earth%flyby:%
V∞%=%4km/s%
TOF%=%0%d%

Lunar%Capture:%
V∞%=%1.4km/s%
(wrt%Earth)%
TOF%=%760%d%

Figure 5.4: Example SEP leveraging sequence



92

%
Figure'2'Tens'to'hundreds'of'tonnes'of'NEA'mass'can'be'captured'at'Earth'from'high=energy'flybys'

with'additional'SEP'thrusting'from'a'40=kW'system.'

%
%

1.5%yr%transfer%

1.5%yr%transfer%
3000%s%Isp,%2.2%t%Xe%

2.1%yr%transfer%

1.5%yr%transfer,%2000%s%Isp,%4.5%t%Xe%

2.1%yr%transfer%
2000%s%Isp,%6.4%t%Xe%

2.1%yr%transfer%
3000%s%Isp,%3.1%t%Xe%

Figure 5.5: SEP leveraging performance

shown in Fig. 5.4), but permits the mass to be estimated for a variety of SEP systems

with di↵erent P0 and Isp. In addition, the returnable mass can be estimated for

di↵erent propellant throughput constraints via Eqn. 5.2.

5.2.4 Asteroids Redirectable to Earth Capture

Of the known NEAs, 32 objects have a v1 less than 2.6 km/s as calculated from

Eqn. 2.65, perihelion less than 1.03 AU, an aphelion greater than 0.97 AU, and have

natural Earth close approaches in the 2020s. Retrieval trajectories for these objects

have been calculated and are shown in Table 5.1. This table gives the current best

return masses for these asteroids assuming a 40-kW SEP system with 3000 sec Isp

and launch on a Delta IV Heavy in 2018. (The trajectory search used to generate

this table was not exhaustive, and better trajectories could be found.) In these data,

twelve asteroids have been found with return masses greater than 100 t, and six in the



93

years 2020 through 2026. Three of these have have been characterized (2013 EC20,

2009 BD, and 2011 MD) and have retrievable masses below the return capability. Four

asteroids that return after 2025 have future characterization opportunities: 2008 HU4,

2012 TF79, 2012 LA, and 2011 BL45.

Table 5.1: Candidate Asteroids for LGA Capture

Asteroid Diameter Est. Asteroid v1 Return Mass Natural Return Characterization
2007 UN12 4-12 m 1.2 km/s 490 t 9/2020
2008 EA9 7-20 m 1.9 km/s 130 t 11/2020
2013 EC20 2-4 m 2.6 km/s 120 t 3/2021,11/2026 radar 2013
2010 UE51 5-15 m 1.2 km/s 130 t 10/2022
2009 BD 3-7 m 1.2 km/s 590 t 6/2023 Spitzer 2013
2011 MD 2-16 m 1.0 km/s 800 t 7/2024 Spitzer 2014
2008 HU4 6-16 m 0.5 km/s 1600 t 4/2026 radar 2016

2012 TF79 8-23 m 0.3 km/ 170 t 3/2027 Spitzer 2016

2006 RH120 3-9 m 1.0 km/s 490 t 10/2028
2012 LA 8-21 m 1.5 km/s 230 t 5/2029 Spitzer 2018

2011 BL45 9-26 m 1.4 km/ 1400 t 8/2029 Spitzer 2015

2008 UA202 3-9 m 1.9 km/s 310 t 10/2029

5.2.5 Example Redirection Trajectory

From Table 5.1, asteroid 2009 BD has been characterized [55] to have a mass less

than 145 t and, as a result, is an attractive candidate for redirection. Figure 5.6

presents an example trajectory to 2009 BD launching in 2018 and Fig. 5.7 shows an

example redirection trajectory with a capture LGA in June 2023. Trajectories to

redirect other asteroids in Table 5.1 are very similar. They all involve a < 2 year

trajectory to rendezvous with the asteroid followed by a redirection leg that only

slightly modifies the asteroid’s natural orbit to achieve the LGA target. The Strange

et al. paper on the ARM mission design [41] provides more detail on this trajectory.
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Figure 4: Go To asteroid leg example trajectory for asteroid 2009 BD. 
  

Figure 5: Asteroid Fetch Leg example for asteroid 2009 BD. 
!

!

Figure 5.6: ARM “Go To” leg

  
  

 
Figure 4: Go To asteroid leg example trajectory for asteroid 2009 BD. 
  

Figure 5: Asteroid Fetch Leg example for asteroid 2009 BD. 
!

!

Figure 5.7: ARM “Fetch” leg
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5.3 Asteroid Heliocentric Redirection

Asteroids that have a v1 too high to be captured with an LGA can still be redi-

rected onto gravity-assist tours using Earth or other planets. Such tours could move

the asteroids into orbits resonant with Earth that regularly return to Earth, allowing

the opportunity for multiple crew missions. They could also move asteroids onto

Earth-Mars cycler [56] orbits (discussed below) where the asteroidal material could

be used for radiation shielding on cycler habitats. Asteroids could even be placed

onto trajectories to the outer solar system. Because there are so many asteroids, if

there is a ballistic gravity-assist trajectory valid for a spacecraft, chances are that an

asteroid could be found with the right v1 to redirect onto that trajectory.

5.3.1 Earth Resonant and Backflip Orbits

A useful place to redirect an asteroid is an Earth resonant orbit (i.e. an orbit

whose period is some rational number multiple of the Earth’s). Such orbits would

allow regular access to the asteroid for both crew visits and resource extraction.

However, purely resonant orbits require missions at least a year long to visit. The

backflip orbit is a half resonant orbit that would encounter the Earth at 6 month

intervals, making it an especially attractive destination for redirection. Although

resonant orbits can generally be achieved with one flyby, backflip orbits may require

multiple flybys to set up depending on the asteroid’s natural orbit. An asteroid could

be placed in either a resonant or backflip orbit temporarily and then redirected onto

another orbit. Such a scenario would allow a 6 month crew mission to an asteroid that

could process the asteroid into radiation shielding or propellant before redirection of

the processed material onto another trajectory such as a cycler.
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5.3.2 Mars Cyclers

Earth-Mars cycler trajectories are repeating sequences of Earth and Mars flybys

where an interplanetary transfer vehicle does not stop at Earth or Mars. [56, 57] To

get to Mars on a cycler, the crew would fly in a small taxi vehicle to the cycler, ride

it to Mars and then take the taxi from the cycler to Mars. To get home the crew

would take their taxi from Mars to the cycler and then from the cycler to Earth. In

general, one cycler would be used to get to Mars and another for the return trip.

There are di↵erent families of cycler trajectories requiring di↵ering �V to maintain

the cycler, taxi �V , and number of cycler vehicles to cover all Mars opportunities.

One interesting cycler is the S1L1 cycler. [57] This cycler is a repeating sequence of

Earth-Earth-Mars flybys that is nearly ballistic and requires 4 cyclers to cover all

Mars opportunities (and 2 vehicles if every other opportunity is skipped).

Over 400 asteroids approach Earth in the 2020s with the right v1 range to po-

tentially be redirected onto a cycler. Table 5.2 presents a small subset of these with

a v1 near 4 km/s, which could allow them to be redirected onto an S1L1 cycler in

the 2030s. This table provides a crude, not optamized, estimate of the impulsive �V

that would be needed to target the first flyby of the redirection sequence.

Table 5.2: Some Candidate Asteroids for Mars Cycler Redirection

Asteroid Absolute Diameter Mass Natural Flyby v1 �V Est.
Magnitude Est. [m] Est. [t] Date [km/s] [m/s]

2013 UX2 29.2 3-14 29-2600 Oct. 2026 3.68 99
2008 LD 29.8 3-16 44-4000 Jun. 2035 4.13 36
2010 UY7 28.5 4-19 77-6900 Oct. 2027 3.96 136
2011 CL50 27.6 6-28 270-24,000 Feb. 2031 3.59 90

2006 UQ216 27.3 7-33 400-36,000 Nov. 2028 3.79 89
2009 HD 27.2 8-34 470-42,000 Oct. 2028 4.01 128
2011 HG2 27.0 8-37 610-55,000 Feb. 2025 3.36 39
2011 PB50 24.9 22-98 11,000-1e6 Feb. 2025 4.02 121
2003 LN6 24.7 24-108 110-1.3e6 Apr. 2026 3.98 66
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Figure 5.8 presents an example redirection trajectory for asteroid 2013 UX2 from

Table 5.2. This example shows that 2013 UX2’s orbit is conducive to redirection to

meet up with an S1L1 cycler on Nov. 15, 2031, but further characterization of 2013

UX2 would be needed to reduce its mass uncertainty before we know if it could be

redirected by an ARM-like vehicle.
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  Flyby:Earth
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Figure 5.8: Example redirection of 2013 UX2 onto S1L1 cycler
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CHAPTER 6. URANUS TOUR DESIGN

The 2013-2023 Planetary Science Decadal Survey [58] has identified a Uranus orbiter

with atmospheric probes mission as a high-priority candidate for an outer planet flag-

ship mission. Both Uranus and Neptune are Ice Giants and have di↵erent composition

and atmospheric dynamics from Jupiter and Saturn. Uranus, being closer, is slightly

easier to reach than Neptune [59]. In addition, unlike Neptune, Uranus is believed to

still possess the satellites that formed with it. This could provide an opportunity to

test hypotheses about the Uranian portion of the solar system nebula by observing

these moons.

Past work by Heaton and Longuski [60] has shown that a Galileo-like multiple

moon gravity-assist tour is possible at Uranus, provided the v1 with respect to the

Uranian moons is su�ciently small. Since Uranus has a very high obliquity (97.77�),

missions that do not arrive near the equinox (which occurs every 42 years and the

next equinox is in 2049), will have very high approach declinations relative to the

Uranian equator. This then leads to highly inclined (60� – 80�) initial capture orbits.

This high inclination causes tours to begin with high v1 relative to the satellites

(5–8 km/s), which is not conducive to the types of tours proposed by Heaton and

Longuski. Because of this, the mission study conducted for the Decadal Survey was

not able to achieve any significant orbit shaping with gravity-assists of the Uranian

Satellites [61].

This chapter will focus on the design of the initial inclination reduction sequences

needed to set up an equatorial multiple satellite Uranian tour. It will not address

other aspects of potential Uranian mission designs such as the delivery of atmospheric

probes and the design of a science tour of the Uranian satellites. Although this chapter

focuses on Uranian missions, the techniques described here are valid in general and
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could be used for other missions to design inclination modification sequences using a

combination of maneuvers and gravity assists.

6.1 Inclination Reduction with Both Maneuvers and Flybys

Satellite tours such as those flown by Galileo and Cassini typically start with an

orbit insertion maneuver and a periapsis raise maneuver that will together target a v1

at a moon. We may use this same approach at Uranus. Flybys of the targeted moon

will then be used to lower the inclination of the orbit into the plane of the other

Uranian satellites so that a gravity-assist tour is then possible. This section will

develop the method for analyzing both the initial orbit and the inclination reduction

flybys.

6.1.1 Twist and Incline Angles

v’’)

v’)r) π/2-γ’*
Δζ*

ξ*

v’)

v’’)

Δv)

ξ*

orbit&plane&before&maneuver&

Figure 6.1: Maneuver planar triangle (left) and spherical triangle (right)
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Figure 6.1 shows two constructions for determining the �V of a maneuver. On

the left is a planar triangle showing how the addition of the �~v vector to the velocity

before the maneuver (~v 0) yields the velocity after the maneuver (~v 00). The law of

cosines applied to this triangle yields the following relation:

�v2 = v02 + v002
� 2v0v00 cos(⇠) (6.1)

where ⇠ is the maneuver twist angle. In the case of a maneuver at apoapsis, ⇠ is

exactly the apo-twist angle [30–32].

But how does one find this angle or even identify the plane that this triangle

is in? To answer these questions we use the right side of Fig. 6.1, which shows a

spherical triangle constructed from the orbit planes before and after the maneuver.

Both planes contain the radius vector at the time of the maneuver, and the angle

between the planes is �⇣. The angle in each plane between a velocity vector and

the radius vector is the compliment of the flight path angle (�). The spherical law of

cosines then yields the following relation for ⇠:

cos(⇠) = sin(�0) sin(�00) + cos(�0) cos(�00) cos(�⇣) (6.2)

We will call ⇣ the incline angle at the maneuver location, and it is found from the

spherical right triangles in Fig. 6.2. In this figure, the orbit plane is the hypotenuse

of the right spherical triangle and the base is a reference plane for the coordinates

(e.g. the planet equator). Here, � is the latitude of the maneuver location, � the

longitude, and f the true anomaly. The orbit parameters in the figure are inclination

(isc), argument of periapsis (!sc), and the node angle (⌦sc). The bottom of the figure

shows Napier’s Circles [62] for each triangle. These circles, which are a mnemonic

for Napier’s Rules, have the two angles next to the right angle of the triangle and

the compliments of the other angles, listed in their order around the right spherical

triangle. The sine of any angle in the circle is equal to the product of the two angles
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Figure 6.2: Spherical right triangles for determining incline angle (⇣)

next to it or the cosines of the two angles opposite to it. Napier’s rules give us the

following useful relation for the latitude of a maneuver before the ascending node:

sin(�) = � sin(isc) sin(f � !sc) (6.3)

and for before the descending node:

sin(�) = � sin(isc) sin(f + !sc) (6.4)

The inclination in both cases is:

cos(isc) = cos(�) cos(⇣) (6.5)

When the maneuver is at the node crossing the incline angle is the orbit inclination

(⇣node = isc), and on the hyperbolic asymptote the incline angle is the B-Plane angle

(⇣1 = ✓fb).
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Location of Inclination Change Maneuvers

Equation 6.5 tells us that a maneuver cannot reduce the inclination below the

latitude of the maneuver location (i.e. the ⇣ = 0 case). And if we recall that flight

path angle is given from orbital angular momentum by:

cos(�) =
h

rv
=

1

rv

p
µcbasc(1 � e2

sc) (6.6)

and we combine this with Eqn. 6.1 and Eqn. 6.2, we get:

�v2 = v02 + v002
�

2

r2
cos(�⇣)

⇣
p

r2v02
� h02

p

r2v002
� h002 + h0h00

⌘
(6.7)

Since v0 and v00 decrease as r increases, Eqn. 6.7 tells us the the �V for a given change

in incline (�⇣) decreases as radius increases. For these reasons, we would like to pick

our maneuver location for an inclination change at the maximum radius in the orbit

where the latitude is less than or equal to the new inclination.

Arrival Conditions

Equation 6.5 also tells us that the declination of the spacecraft hyperbolic asymp-

tote (�1) on approach to Uranus sets the minimum inclination of the arrival hyper-

bola. This inclination can be achieved by targeting a B-Plane angle (✓fb) of 0�, and

an inclination of 90� can be achieved with a ✓fb of ±90�. Equation 6.3 and Eqn. 6.4

allow us to calculate the argument of periapsis !sc which will be needed to check to

see if the spacecraft is passing through a Uranian ring. To do this we will need f1,

the true anomaly of the hyperbola’s asymptote, which is a function of the Uranus

periapsis distance (rp) targeted for orbit insertion:1

cos(f1) = �

1

esc

=
�µcb

µcb � rpv2
i

(6.8)

1Equation 6.8 is derived later in this chapter.
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Here µcb is the central body’s GM, and vi is the magnitude of the incoming v1 vector.

If we chose the reference plane for orbit inclination to be the Uranian ring plane,

the ring plane crossing will always be on the line of nodes of the spacecraft’s orbit. We

may then check the radius at the node crossing to determine if the spacecraft crosses

within a ring or not. The argument of periapsis (!sc) is defined as the angle from

the ascending node to periapsis. The angle from the descending node to periapsis is

then ⇡ � !sc. If we substitute these values for fnode into the conic equation, setting

r = rnode:

rnode =
asc(1 � e2

sc)

1 ± esc cos(!sc)
(6.9)

we may then write !sc as the following:

if at ascending node (i.e., isc � 0):

cos(!sc) =
1

esc


asc

renc

(1 � e2
sc) � 1

� (6.10)

if at descending node (i.e., isc < 0):

cos(!sc) =
1

esc


1 �

asc

renc

(1 � e2
sc)

� (6.11)

This gives us cos(!sc), but not the sign of !sc. To resolve this quadrant ambiguity,

we note that the sign of !sc depends of whether the node crossing is inbound (i.e.

before periapsis) or outbound (i.e. after periapsis):

sign(!sc) =

8
><

>:

1 if crossing inbound

�1 if crossing outbound
(6.12)

We will check the inbound crossing of the hyperbola before orbit insertion and the

outbound crossing of the initial capture orbit.
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6.1.2 Finding Inclination Reduction Sequences

To find an inclination reduction sequence, it is most convienant to begin the

analysis in the middle at the first flyby and then work our way out. Equation 2.65

allows us to assume a v1 for that flyby and an orbit period before that flyby and derive

the inclination needed. We can then work backwards to an assumed periapsis raise

maneuver location and orbit period and inclination before that maneuver, and again

back from there to an assumed orbit insertion maneuver location and B-plane angle

for the incoming hyperbola. For a given target moon and v1, we can optimize the free

parameters subject to the node crossing constraints to find the lowest �V solution.

For the example mission in the following section, this was done using MATLAB’s

fmincon function (a non-linear, constrained optimization solver).

The inclination reduction sequence cannot change the v1 with respect to the

flyby moon without the addition of v1 leveraging maneuvers or backflip transfers

with other moons. In this analysis, we will neglect those cases and assume the v1 is

constant. This means that as inclination is reduced, the eccentricity will increase (by

Eqn. 2.65) and the periapsis will decrease. Placing periapsis at the outer edge of the

ring system then provides a lower bound on orbit period. We will target the minimum

integer resonance (i.e. 1:1, 2:1, 3:1, etc.) that avoids the rings. Until that period is

achieved, the flybys will pump down to the lowest integer resonance achievable and

use any excess bending to reduce crank. After we reach that period, flybys will reduce

crank until inclination is zero.

6.2 Example Uranus Tour Design

As an example application of the techniques developed in the previous section,

this section will develop a �V estimate for an inclination reduction sequence starting

from the interplanetary trajectory in Fig. 6.3. This is a 13-year �V-EGA with a

Saturn flyby launching in 2025. It arrives with a v1 of 6.5 km/s and a declination

of 75.6� . The goal will be to find a 1-year reduction sequence, which would then
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leave us enough time for a 2-year planar tour in a 15-year mission. We will limit the

Uranian periapsis altitude to no lower than 5,000 km and the ring plane crossing to

no lower than 51,140 km to avoid the rings. In this example, the first Uranian moon

flyby will be 200 km and subsequent flybys will limited to 50 km or higher.

6.2.1 Tisserand Graph for Uranian Satellites

Figure 6.4 shows a ra �rp Tisserand Graph [18,37] for Oberon (black) and Titania

(blue) for 0 inclination. The solid lines are contours of constant v1 and the dashed

lines are the integer resonances with each satellite. The red horizontal line denotes

cases where the orbit periapsis is below the outer extent of the rings. The v1 contours

have tick marks denoting the spacing between 50 km flybys of each moon.

We see that a Titania 3:1 resonance (26 days) is very close to an Oberon 2:1

resonance (27 days). To avoid the rings at this resonance we need a v1 of 4.5 km/s

or less at Titania or a v1 of less than about 3.9 km/s at Oberon. A v1 of 2 km/s is

the lowest v1 at either body to allow periapses near the rings.

6.2.2 �V and Flight Time

Figure 6.5 shows the optimal �V required to target various v1 values from the

given arrival conditions. Figure 6.6 then shows the flight time of the inclination

reduction sequences for each v1 (including the initial Uranian orbit). We see that

to achieve a 1-year inclination reduction sequence, we would need a v1 of about 2.2

km/s at Titania or about 2 km/s at Oberon. This corresponds to an initial orbit �V

of 1.86 km/s for Titania and 1.9 km/s for Oberon.

6.3 Relevance of Results

This chapter developed a parameterization of maneuvers in terms of twist (⇠)

and incline (⇣) angles that is convenient for designing maneuvers that change inclina-
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Figure 6.3: Example 2025 EESU trajectory
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tion or argument of periapsis. This combined with known relations between v1 and

Tisserand’s Criterion and for pump and crank in Chapter 2, enables the analysis of

initial inclination reduction sequences for gravity-assist tours with algebraic relations.

Although this chapter focuses on Uranian missions, the techniques described in this

chapter are valid in general and could be used for other missions to design inclination

modification sequences using a combination of maneuvers and gravity assists.
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CHAPTER 7. SUMMARY

7.1 Mission Applications

The techniques in Chapters 2 and 3 were used to develop both the Cassini Equinox

[63] and Solstice [64] extended missions. Tisserand Graphs from Chapter 3 and the

Leveraging techniques in Chapter 4 have been use for tour designs for the NASA

Europa Orbiter [20,36,65], NASA Europa Clipper [66], NASA Europa Lander [65,67],

NASA Jupiter System Observer [68], NASA Titan Saturn System Mission [38], NASA

Asteroid Redirect Mission [41], ESA JUpiter ICy moon Explorer (JUICE) [69], and

JAXA Jupiter Magnetospheric Orbiter [70] mission concepts.

7.2 Topics for Future Work

Di↵erent-Body Transfers

Tisserand Graphs only provide a phase-free method for designing di↵erent-body

transfers. I suspect that it should be possible to modify the algorithm for finding

same-body non-resonant transfers in § 3.1.2 to find di↵erent-body transfer as a func-

tion of the angle between the positions of the two bodies at the start of the transfer.

Such a method should be possible without solving Lambert’s problem.

Non-Leveraging Impulsive Transfers

Leveraging transfers are only one possible way to used impulsive �V in concert

with gravity assists. What about using �V to focus on changing pump or crank

instead of v1 magnitude?
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Low-Thrust V-Infinity Leveraging

Low-thrust transfers add a great deal more flexibility than the impulsive transfers

studied in Chapter 4. This opens up both the potential for greater design freedom

and the problem of many more degrees of freedom to consider in analysis.

Low-Energy Gravity-Assist Transfers

Patched conics are not su�cient for designing gravity-assist trajectories in the

Earth-Moon system. Trajectories with low Lunar v1 are heavily perturbed by the

Moon, and trajectories with high Lunar v1 are heavily perturbed by the Sun. An

approach that uses Lunar flybys as patch-points between CR3BP orbits rather than

Keplerian orbits has already been shown to yield interesting resultsby Gregory Lan-

toine [54], and I think there is still a lot more to do in this area.

7.3 Conclusion

Figure 7.1 shows my first attempt at understanding the three-dimensional version

of the v-infinity triangle (Fig. 2.1). My utter confusion in staring at Fig. 7.1 eventually
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Figure 7.1: A confusing gravity-assist vector diagram
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led me to spherical coordinates, spherical trigonometry, the results in Chapter 2, and

eventually much of the rest of this dissertation.

I hope that this dissertaion has demonstrated how algebra, vector analysis, and

even spherical trigonometry can still be useful for spaceflight – even in world where

powerful computers are ubiquitous. The techniques in this dissertation have allowed

me to handcraft gravity-assist tours that do what I want instead of just waiting to see

what a month-long computer run spits out. This has made the tour design problem

a lot less confusing and a lot more fun.
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