14 research outputs found
The Freshwater Information Platform: a global online network providing data, tools and resources for science and policy support
Freshwaters are among the most complex, dynamic, and diverse ecosystems globally. Despite their small share of the earth’s surface (less than 1%) they are home to over 10% of all known animal species. Biodiversity decrease in general and freshwater biodiversity decline in particular have recently received increasing attention, and various policy instruments are now targeting the conservation, protection and enhancement of biodiversity and associated ecosystem services. Surveillance programs as well as a variety of research projects have been producing a tremendous amount of freshwater-related information. Though there have been various attempts to build infrastructures for online collection of such data, tools and reports, they often provide only limited access to resources that can readily be extracted for conducting large scale analyses. Here, we present the Freshwater Information Platform, an open system of relevant freshwater biodiversity-related information. We provide a comprehensive overview of the platform’s core components, highlight their values, present options for their use, and discuss future developments. This is complemented by information on the platform’s current management structure, options for contributing data and research results and an outlook for the future
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
The Freshwater Information Platform : a global online network providing data, tools and resources for science and policy support
Freshwaters are among the most complex, dynamic, and diverse ecosystems globally. Despite their small share of the earth's surface (less than 1%) they are home to over 10% of all known animal species. Biodiversity decrease in general and freshwater biodiversity decline in particular have recently received increasing attention, and various policy instruments are now targeting the conservation, protection and enhancement of biodiversity and associated ecosystem services. Surveillance programs as well as a variety of research projects have been producing a tremendous amount of freshwater-related information. Though there have been various attempts to build infrastructures for online collection of such data, tools and reports, they often provide only limited access to resources that can readily be extracted for conducting large scale analyses. Here, we present the Freshwater Information Platform, an open system of relevant freshwater biodiversity-related information. We provide a comprehensive overview of the platform's core components, highlight their values, present options for their use, and discuss future developments. This is complemented by information on the platform's current management structure, options for contributing data and research results and an outlook for the future
Technical Design Report for the: PANDA Micro Vertex Detector
This document illustrates the technical layout and the expected performance
of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect
charged particles as close as possible to the interaction zone. Design criteria
and the optimisation process as well as the technical solutions chosen are
discussed and the results of this process are subjected to extensive Monte
Carlo physics studies. The route towards realisation of the detector is
outlined.Comment: 189 pages, 225 figures, 41 table
Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons
To study fundamental questions of hadron and nuclear physics in interactions
of antiprotons with nucleons and nuclei, the universal PANDA detector will be
built. Gluonic excitations, the physics of strange and charm quarks and nucleon
structure studies will be performed with unprecedented accuracy thereby
allowing high-precision tests of the strong interaction. The proposed PANDA
detector is a state-of-the art internal target detector at the HESR at FAIR
allowing the detection and identification of neutral and charged particles
generated within the relevant angular and energy range. This report presents a
summary of the physics accessible at PANDA and what performance can be
expected.Comment: 216 page
Inverse algorithm for electromagnetic wire inspection based on GMR-sensor arrays
To meet the increasing fabrication quality standards and the high throughput requirements NDE techniques are reliant on efficient reconstruction tools and visualization tools. In this work we present an inverse algorithm for a modern electromagnetic non-destructive testing approach using a small GMR sensor array to inspect superconducting wires. Four sensitive GMR sensors are positioned around the wire. Small defects of 100 µm in size could be detected in a depth of 200 µm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. This remarkably SNR and the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and future tomography-like mapping techniques. We developed several inverse algorithms based on either a Finite Element Method or an analytical approach leading to defect localization with an accuracy of a few 10 µm
High resolution eddy-current wire testing based on a GMR sensor-array
Increasing demands in materials quality and cost effectiveness have led to advanced
standards in manufacturing technology. Especially when dealing with high quality standards in
conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast
quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a
small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around
the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of
about 100 µm. This enables us to detect under surface defects of 100 µm in size in a depth of 200 µm
with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to
10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution
which offers new visualisation techniques for defect localisation, defect characterization and
tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite
Element Method or an analytical approach. These allow for accurate defect localization on the µm
scale and an estimation of the defect size
Visualization of material defects - modern approaches in acoustical and electrical NDE-methods
Increasing demands in materials quality and cost effectiveness have led to advanced
standards in manufacturing technology. Especially when dealing with high quality
standards in conjunction with high throughput quantitative NDE techniques are vital to
provide reliable and fast quality control systems. Fast NDE-systems using a high degree
of automatisation can be used for both determining the degree of integrity of the
components under test and indicating a change of production parameters as well.
However, independently of the applied NDE method and the underlying physical
principle a reliable visualisation of hidden defects within the component under test is
based on a sufficient high signal to noise ratio (SNR) and a high spatial resolution. In this
talk we illuminate two standard NDT methods such as Ultrasonic Testing and Eddy
Current Testing and show their physical principles also discussing the interaction
between sound waves or induced eddy currents with different kinds of material defects.
This introduction substantiates the attainable SNR and spatial resolution of both methods
with respect to defect sizing and defect classification. As a first future prospect we report
on the SAFT-algorithm to improve SNR and spatial resolution paving the way for a flaw
sizing approach in ultrasonic inspection. As a second modern NDE approach we
represent the use of small magnetoresistance sensor arrays for EC testing of Al-laser
welds or for testing superconducting wires. The high sensitivity and small extent of GMR
sensors results in a remarkably SNR and spatial resolution offering new visualisation
techniques for defect localisation, defect characterization and tomography-like mapping
techniques
