167 research outputs found

    Presence of the “Threatened” \u3ci\u3eTrimerotropis Huroniana\u3c/i\u3e (Orthoptera: Acrididae) in Relation to the Occurrence of Native Dune Plant Species and the Exotic \u3ci\u3eCentaurea Biebersteinii\u3c/i\u3e

    Get PDF
    Trimerotropis huroniana Wlk. is a “Threatened” species in Michigan and Wisconsin with a distribution limited to open dune systems in the northern Great Lakes region of North America. Pitfall traps were utilized in the Grand Sable Dunes of Pictured Rocks National Lakeshore, MI, along with an herbaceous plant survey, to identify the relationship of T. huroniana with native dune plant species, Ammophila breviligulata Fern. (American beachgrass, Poaceae), Artemisia campestris L. (field sagewort, Asteraceae), and the exotic invasive plant Centaurea biebersteinii DC. [=Centaurea maculosa, spotted knapweed, Lamarck] (Asteraceae). The absence of C. biebersteinii resulted in an increased likelihood of capturing T. huroniana. This was most likely due to the increased likelihood of encountering A. campestris in areas without C. biebersteinii. The occurrence of A. breviligulata was independent of C. biebersteinii presence. A significant positive linear relationship occurred between the percent cover of A. campestris and the traps that captured T. huroniana. There was no significant relationship between A. breviligulata percent cover and the traps that captured T. huroniana. The occurrence and distribution of T. huroniana is closely related to the presence and abundance of A. campestris. Habitat conservation and improvement for T. huroniana should include increases in A. campestris populations through the removal of C. biebersteinii

    Interrupting the Response of \u3ci\u3eDendroctonus Simplex\u3c/i\u3e Leconte (Coleoptera: Curculionidae: Scolytinae) to Compounds That Elicit Aggregation of Adults

    Get PDF
    The eastern larch beetle, Dendroctonus simplex LeConte (Coleoptera: Curculionidae: Scolytinae), is a native bark beetle that has caused significant mortality to tamarack, Larix laricinia, in the Upper Peninsula of Michigan. The effectiveness of potentially attractive chemicals for D. simplex was tested and the most attractive compound, seudenol, was used in subsequent studies to test interruptants against D. simplex. Verbenone, methylcyclohexenone (MCH), and 4-allylanisole were tested as potential interruptants in combination with seudenol. Catches of D. simplex in traps baited with seudenol and MCH were not significantly different from catches in unbaited control traps, indicating successful interruption of the response to seudenol by MCH. Verbenone released at commercially available doses significantly increased catches of D. simplex in traps baited with seudenol, however it did not catch significantly more D. simplex than the unbaited control traps when released alone. Traps baited with 4-allylanisole did not significantly reduce the number of D. simplex captured compared to traps baited solely with seudenol. The potential for MCH to be used to protect individual trees and in stand level management of D. simplex is discussed

    Predicting Emerald Ash Borer, \u3ci\u3eAgrilus Planipennis\u3c/i\u3e (Coleoptera: Buprestidae), Landing Behavior on Unwounded Ash

    Get PDF
    Detection of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest pest, is difficult in low density populations war- ranting continual development of various trapping techniques and protocols. Understanding and predicting landing behavior of A. planipennis may assist in the further development of trapping techniques and improvement of trapping protocols for widespread survey programs in North America. Three multiple regression models were developed using ash tree vigor and crown light exposure to predict the landing behavior of A. planipennis. These models were then used to predict the landing density of A. planipennis at separate sites and in separate years. Successful prediction of A. planipennis capture density at the test sites was limited. Even though the multiple regression models were not effective at predicting landing behavior of A. planipennis, tree characteristics were used to predict the likelihood of A. planipennis landing. Trees predicted as having high likelihood of landing had 3.5 times as many A. planipennis adults/m2 on stem traps than trees predicted as having low likelihood of landing. While the landing density of A. planipennis may not be efficiently predicted, the utility of these predictions may be in the form of identifying trees with a high likelihood of A. planipennis landing. Those high likelihood trees may assist in improving existing detection programs and techniques in North American forests

    Presence of the “Threatened” \u3ci\u3eTrimerotropis Huroniana\u3c/i\u3e (Orthoptera: Acrididae) in Relation to the Occurrence of Native Dune Plant Species and the Exotic \u3ci\u3eCentaurea Biebersteinii\u3c/i\u3e

    Get PDF
    Trimerotropis huroniana Wlk. is a “Threatened” species in Michigan and Wisconsin with a distribution limited to open dune systems in the northern Great Lakes region of North America. Pitfall traps were utilized in the Grand Sable Dunes of Pictured Rocks National Lakeshore, MI, along with an herbaceous plant survey, to identify the relationship of T. huroniana with native dune plant species, Ammophila breviligulata Fern. (American beachgrass, Poaceae), Artemisia campestris L. (field sagewort, Asteraceae), and the exotic invasive plant Centaurea biebersteinii DC. [=Centaurea maculosa, spotted knapweed, Lamarck] (Asteraceae). The absence of C. biebersteinii resulted in an increased likelihood of capturing T. huroniana. This was most likely due to the increased likelihood of encountering A. campestris in areas without C. biebersteinii. The occurrence of A. breviligulata was independent of C. biebersteinii presence. A significant positive linear relationship occurred between the percent cover of A. campestris and the traps that captured T. huroniana. There was no significant relationship between A. breviligulata percent cover and the traps that captured T. huroniana. The occurrence and distribution of T. huroniana is closely related to the presence and abundance of A. campestris. Habitat conservation and improvement for T. huroniana should include increases in A. campestris populations through the removal of C. biebersteinii

    Efficacy of treatments against garlic mustard (Alliaria petiolata) and effects on forest understory plant diversity

    Get PDF
    Garlic mustard, an invasive exotic biennial herb, has been identified in the Upper Peninsula of Michigan, but is not yet widely distributed. We tested the effectiveness and impact of management tools for garlic mustard in northern hardwood forests. Six treatment types (no treatment control, hand-pull, herbicide, hand-pull/herbicide, scorch, and hand-pull/scorch) were applied within a northern hardwood forest invaded by garlic mustard. We sampled understory vegetation within plots to compare garlic mustard abundance (distinguishing first and second year plants) and native plant diversity before and after treatment. Results immediately following treatment indicated that garlic mustard seedling abundance was significantly reduced by herbicide, hand-pull/herbicide, scorch, and hand-pull/scorch treatments, and that adult abundance was reduced by all treatments. However, sampling of treatment sites one year later showed an increase in seedling abundance in herbicide and hand-pull/herbicide plots. Adult garlic mustard abundance after one year was lower than the control with the exception of the hand-pull plots where adult abundance did not differ. After one year, understory species richness and Shannon’s Diversity were lower in the herbicide and pull/herbicide treatments. Based on these results, we conclude that single-year treatment of garlic mustard with hand-pulling, herbicide, and/or scorching is ineffective in reducing garlic mustard abundance and may inadvertently increase the success of garlic mustard, while negatively impacting native understory species

    A Pilot Study of Transplanting Methods for Wilding American Beech (Fagus grandifolia)

    Get PDF
    American beech is facing pressure from a number of emergent health issues including beech bark disease, beech leaf disease, beech leaf mining weevil, and climate and habitat change. Interest has increased in the propagation of American beech in response to the demand for more disease-resistant American beech for use in restoration. This study describes the first steps towards publishing methods for transplanting beech in order to supplement commercially available beech seedlings in an area with multiple agencies depleting the existing stock of slow growing species. American beech seedlings were purchased from a nursery in northern Michigan and were excavated from natural stands in the Hiawatha National Forest. Survival rates for these cohorts were compared after a growing season and by the relative amounts of fine roots present on the trees. Generally, the wildling seedlings had a higher survivability than the purchased bare root seedlings. Future work is proposed that could clarify the conditions leading to the higher survival in these wildling seedlings, including the potential for handling the time or age of the seedlings to influence survival

    Linking tree growth rate, damage repair, and susceptibility to a genus-specific pest infestation

    Get PDF
    Pest preference and subsequent susceptibility of a host individual is likely related to previous growth patterns in that host. Emerald ash borer (Agrilus planipennis Fairmaire) is a pestiferous beetle introduced to North America from Asia. While all species of ash are susceptible to attack, some individual trees appear to survive infestation. We selected ash trees in southeastern Michigan, collected cores and categorized trees as high tolerance to emerald ash borer attack (high overall health, low crown dieback), low tolerance (low overall health, high crown dieback) and intermediate tolerance (in-between the other categories). We artificially wounded trees and measured wound closure after 3 years. Ring width indices were not correlated between high and low tolerance trees. Regression slopes comparing growth and years were significantly different between the three tolerance categories, with high tolerance trees having the steepest slope. Wound closure was greatest in high tolerance trees. High tolerance trees demonstrating more rapid (steeper regression slope), consistent (lower variance), and effective (greater wound closure) growth. Those vigorously growing trees likely had more capacity to repair damage caused by emerald ash borer, leading to healthier trees in our categorization. Linking previous host growth patterns to health may have implications related to identifying individual trees potentially tolerant to attack

    Genome-wide SNP identification in Fraxinus linking genetic characteristics to tolerance of Agrilus planipennis

    Get PDF
    Ash (Fraxinus spp.) is one of the most widely distributed tree genera in North America. Populations of ash in the United States and Canada have been decimated by the introduced pest Agrilus planipennis (Coleoptera: Buprestidae; emerald ash borer), having negative impacts on both forest ecosystems and economic interests. The majority of trees succumb to attack by A. planipennis, but some trees have been found to be tolerant to infestation despite years of exposure. Restriction site-associated DNA (RAD) sequencing was used to sequence ash individuals, both tolerant and susceptible to A. planipennis attack, in order to identify single nucleotide polymorphism (SNP) patterns related to tolerance and health declines. de novo SNPs were called using SAMtools and, after filtering criteria were implemented, a set of 17,807 SNPs were generated. Principal component analysis (PCA) of SNPs aligned individual trees into clusters related to geography; however, five tolerant trees clustered together despite geographic location. A subset of 32 outlier SNPs identified within this group, as well as a subset of 17 SNPs identified based on vigor rating, are potential candidates for the selection of host tolerance. Understanding the mechanisms of host tolerance through genome-wide association has the potential to restore populations with cultivars that are able to withstand A. planipennis infestation. This study was successful in using RAD-sequencing in order to identify SNPs that could contribute to tolerance of A. planipennis. This was a first step toward uncovering the genetic basis for host tolerance to A. planipennis. Future studies are needed to identify the functionality of the loci where these SNPs occur and how they may be related to tolerance of A. planipennis attack

    Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing.

    Get PDF
    The precursor of the cysteine protease papain has been expressed and secreted as propapain from insect cells infected with a recombinant baculovirus expressing a synthetic gene coding for prepropapain. This 39-kDa secreted propapain zymogen molecule is glycosylated and can be processed in vitro into an enzymatically active authentic papain molecule of 24.5 kDa (Vernet, T., Tessier, D.C., Richardson, C., Laliberte, F., Khouri, H. E., Bell, A. W., Storer, A. C., and Thomas, D. Y. (1990) J. Biol. Chem. 265, 16661-16666). Recombinant propapain was stabilized with Hg2+ and purified to homogeneity using affinity chromatography, gel filtration, and ion-exchange chromatographic procedures. The maximum rate of processing in vitro was achieved at approximately pH 4.0, at a temperature of 65 degrees C and under reducing conditions. Precursor processing is inhibited by a variety of reversible and irreversible cysteine protease inhibitors but not by specific inhibitors of serine, metallo or acid proteases. Replacement by site-directed mutagenesis of the active site cysteine with a serine at position 25 also prevents processing. The inhibitor 125I-N-(2S,3S)-3-trans-hydroxycarbonyloxiran-2-carbonyl-L-tyrosine benzyl ester covalently labeled the wild type papain precursor, but not the C25S mutant, indicating that the active site is accessible to the inhibitor and is in a native conformation within the precursor. Based on biochemical and kinetic analyses of the activation and processing of propapain we have shown that the papain precursor is capable of autoproteolytic cleavage (intramolecular). Once free papain is released processing can then occur in trans (intermolecular)

    RNAi as a management tool for the western corn rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    The western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cultural control practices. Since 2003, the only novel commercialized developments in rootworm management have been transgenic plants expressing Bt insecticidal proteins. Four transgenic insecticidal proteins are currently registered for rootworm management, and field resistance to proteins from the Cry3 family highlights the importance of developing traits with new modes of action. One of the newest approaches for controlling rootworm pests involves RNA interference (RNAi). This review describes the current understanding of the RNAi mechanisms in WCR and the use of this technology for WCR management. Further, the review addresses ecological risk assessment of RNAi and insect resistance management of RNAi for corn rootworm
    • …
    corecore