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1 Introduction 
The western corn rootworm (WCR), Diabrotica virgifera virgifera 
LeConte (Coleoptera: Chrysomelidae) is a remarkably adapt-
able and invasive pest,1 and arguably the most important pest 
of corn, Zea mays (L.), throughout the US Corn Belt.1–3 Current 
economic analysis estimates that costs of control and yield 
loss associated with WCR damage exceed $US 1 billion annu-
ally.2 WCR is a univoltine pest that overwinters in the soil as 
eggs, with larvae hatching in late spring to early summer, de-
pending on soil temperatures.4 WCR larvae feed on roots and 
have an obligatory relationship with grasses (Graminae), espe-
cially corn. The majority of crop damage is thus caused by lar-
val injury to roots, resulting in reduced yields and plant lodg-
ing. Historically, crop rotation to a non-host crop [e.g. Glycine 
max (L.)] and insecticide applications have been the primary 
methods to control rootworm. Corn rootworm management 
has been challenging due to its exceptional capacity to evolve 
resistance to both chemical insecticides1,5–8 and cultural con-
trol practices such as crop rotation.1,9 In instances where resis-
tance has been documented, it has always been associated with 
uniform adoption of a given technology over large geographic 
areas. This has been true of chemical insecticides, crop rotation 
and, most recently, with transgenic corn lines that express in-
secticidal proteins from Bacillus thuringiensis (Bt). As a conse-
quence, increasing rootworm management options that include 
multiple modes of action that encourage growers to utilize a 

diversity of cost-effective methods to protect their corn yield is 
critical to future sustainability of Bt technologies. It is clear that 
reliance on a single management approach is not sustainable, 
and increasing the diversity of control options, including trans-
genic plants, chemical insecticides, biological control, and cul-
tural practices, is paramount. Inherent to this diversity of con-
trol options is the identification of novel control methods that 
are effective and safe to the environment. 

Since 2003, when the first Bt plants for corn rootworm man-
agement became available, novel commercialized events have 
been limited to new Bt proteins, and only four insecticidal pro-
teins are currently registered.10 Cross-resistance has been doc-
umented between at least two of these proteins (Cry3Bb1 and 
mCry3A), where field-evolved resistance to one confers resis-
tance to the other.11,12 Characteristics of at least one documented 
field-evolved Cry3Bb1 resistant strain include non-recessive in-
heritance and a lack of fitness costs, which are expected to favor 
the development and maintenance of resistance in the field.13 

The Cry34Ab1/Cry35Ab1 (Cry34/35) binary insecticidal protein 
does not exhibit cross-resistance to Cry3 proteins and is used as 
a single trait or as a partner to Cry3 proteins in pyramids. Conse-
quently, it is likely to be subject to increasing selective pressures, 
especially in fields where Cry3 resistance is established. The cur-
rent state of the rootworm-active Bt traits in the field highlights 
the importance of developing new modes of action to control 
this economically important insect pest. 

Published in Pest Management Science 72 (2016), pp 1652–1663. doi  10.1002/ps.4324 
Copyright © 2016 Society of Chemical Industry; published by John Wiley & Sons, Inc. Used by permission.
Submitted 7 February 2016; revised 27 April 2016; accepted 24 May 2016; published online 27 June 2016. 

RNAi as a management tool for the western corn rootworm, 
Diabrotica virgifera virgifera  
Elane Fishilevich,1 Ana M. Vélez,2 Nicholas P. Storer,1 Huarong Li,1 Andrew J. Bowling,1  
Murugesan Rangasamy,1 Sarah E. Worden,1 Kenneth E Narva,1 and Blair D. Siegfried3  

1 Dow AgroSciences, Indianapolis, IN
2 Department of Entomology, University of Nebraska–Lincoln, Lincoln, NE
3 Entomology and Nematology Department, University of Florida, Gainesville, FL

Corresponding author — AM Vélez, Department of Entomology, University of Nebraska–Lincoln, Lincoln, Nebraska 68583-0816;l  
email avelezarango2@unl.edu 

Abstract 
The western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic 
estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn 
rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cul-
tural control practices. Since 2003, the only novel commercialized developments in rootworm management have been transgenic 
plants expressing Bt insecticidal proteins. Four transgenic insecticidal proteins are currently registered for rootworm management, 
and field resistance to proteins from the Cry3 family highlights the importance of developing traits with new modes of action. One 
of the newest approaches for controlling rootworm pests involves RNA interference (RNAi). This review describes the current under-
standing of the RNAi mechanisms in WCR and the use of this technology for WCR management. Further, the review addresses eco-
logical risk assessment of RNAi and insect resistance management of RNAi for corn rootworm. 
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One of the newest approaches for managing rootworm pests 
involves RNA interference or RNAi. First described in the nema-
tode Caenorhabditis elegans, RNAi refers to a process in which 
small double-stranded RNAs direct sequence-specific repres-
sion of gene expression.14–16 The RNAi pathway has been impli-
cated as a mechanism that evolved for defense against viruses 
or integration of mobile genetic elements;15 RNAi is also effec-
tive in regulating gene expression in virtually all eukaryotic or-
ganisms, including plants and insects.14,17–20 RNAi has become 
a popular functional genomics and genetics tool that is widely 
used to study gene functions through ‘knockdown’ of cognate 
gene targets. Both academia and the agricultural industry use 
RNAi in their research and development, and recognize its po-
tential as a product for pest management. In insects, effective 
RNAi has been described in several species, yet the responses 
vary greatly across taxa.19,21 The initial examples of root protec-
tion against western corn rootworm by transgenic RNAi plants 
expressing double-stranded RNA22 foreshadow the likelihood 
that new commercial corn events based on RNAi will soon be 
available to complement Bt corn technology for WCR manage-
ment.23 This review describes the current understanding of the 
RNAi mechanisms in WCR and the use of this technology for 
WCR management. 

2 RNAi Traits 
2.1 Lethal RNAi 
Unlike other agronomically important pests, such as leaf-chew-
ing Lepidoptera,21 both larvae and adult WCR exhibit a robust 
RNAi response upon ingestion of environmental dsRNA. This oral 
response enables the use of high-throughput artificial diet-based 
feeding assays as a method for testing dsRNA molecules target-
ing essential genes.22,23 In 2007, Baum et al.22 interrogated a set 
of 290 genes and identified numerous gene targets that exhib-
ited lethality and stunting in WCR larvae. In that study, one of the 
most effective RNAi gene targets was vacuolar ATPase subunit 
A (V-ATPase); exposure of larvae to V-ATPase-A dsRNA resulted 
in a rapid suppression of corresponding endogenous mRNA, 
mortality and/or growth inhibition. Importantly, oral exposure 
of WCR larvae to corn plants expressing dsRNA directed against 
the V-ATPase gene protected the plants from root damage, doc-
umenting for the first time the potential for in planta RNAi as a 
possible pest management tool.22 Further studies demonstrated 
that WCR Snf7, a vacuolar protein sorting gene of the (ESCRT-
III) Endosomal Sorting Complex Required for Transport-III (Vps32 
or shrub in Drosophila), dsRNA also protected corn roots from 
WCR feeding damage,23–26 emphasizing the value of the RNAi 
for the control of WCR. 

A successful lethal RNAi response in WCR greatly depends on 
the selection of the target gene. As RNAi is systemic in WCR,27 

target gene selection does not have to be limited to midgut 
epithelial cells as is the case for gut-active insecticidal proteins 
such as Bt Cry proteins. The selection of RNAi targets should 
take into consideration factors relating to target sensitivity and 
dsRNA design. It is also important that the dsRNA target se-
quence is highly conserved both within and across target spe-
cies, but is not conserved across broad taxonomic groups.28 Al-
most by definition, a lethal RNAi target should be an essential 
gene (e.g. housekeeping gene).24 An essential function incorpo-
rates the idea that the gene is necessary during the life stage 
and timeframe in which the oral exposure occurs. However, it 
is important to consider that, even for essential biological pro-
cesses, parallel pathways or homologous genes may substitute 

for the function of a targeted gene. Other relevant factors may 
include transcript expression level, the dose sensitivity of a gene 
and the turnover rate of the protein. A short half-life of a pro-
tein will likely allow more rapid protein depletion and a faster 
appearance of the corresponding phenotype.29 Unfortunately, a 
priori knowledge of protein half-life is generally lacking. Other 
parameters, such as the annotation of all homologs or transcript 
splice isoforms, are difficult to determine in WCR, which lacks a 
published genome. Consequently, experimental screening of the 
RNAi candidate genes is still the best approach for the identifi-
cation of lethal RNAi targets in WCR. 

Potential RNAi targets in WCR can also leverage genome-
wide testing approaches in other insects and insect cell lines.30,31 

For example, Ulrich et al.31 identified dsRNA for 100 targets in 
the red flour beetle Tribolium castaneum causing more than 90% 
mortality through larval and pupal injection bioassays. In that 
dsRNA injection study, the authors also tested the Tribolium or-
thologs of the five most active WCR targets described by Baum 
et al.22 Those RNAi targets were also active in Tribolium, although 
the activity did not reach levels of the most active Tribolium RNAi 
targets. That result suggests that, while leveraging RNAi targets 
from other insects increases the probability of success, the over-
all efficacy of an RNAi target may vary among insects. 

Independent of the target gene, the outcomes of the RNAi 
bioassays in WCR largely depend on the design of the bioassay 
itself. Conditions such as the length of the dsRNA fragment, the 
dose sensitivity of the target gene and the duration of the bioas-
say itself influence the result of RNAi bioassays. Bolognesi et al.24 

described bioassays that were carried out for 12 days, and Baum 
et al.22 noted that a seven-day bioassay resulted in little if any ef-
fect. For Snf7, Bolognesi et al.24 noted a considerable growth in-
hibition (GI) within 5 days. It is likely that shortening the obser-
vation period to less than 12 days may produce a lower number 
of RNAi targets but lead to the identification of more efficacious 
or faster-acting dsRNAs. Measurements other than the overall 
lethality, such as LC50

 (concentration that leads to 50% lethal-
ity), LT50

 (time to reach 50% mortality in the tested population) 
or GI50

 (concentration that leads to 50% growth inhibition), can 
be useful to identify potential target sequences and discriminate 
among multiple efficacious dsRNA targets. 

2.2 Adult and parental RNAi 
Rangasamy and Siegfried32 was the initial study reporting lethal 
RNAi effects in adult WCR. They observed that feeding dsRNA 
for V-ATPase A to WCR adults via artificial diet led to a reduction 
in transcript levels and protein expression, and eventual mortal-
ity within 14 days of exposure. Adult bioassays may be useful as 
an alternative screening method for identification of lethal RNAi 
targets.24,33 The susceptibility of WCR adult beetles to dsRNA32 

offered the possibility of exploring transgenerational control of 
WCR. This effect, also called parental RNAi (pRNAi), has been ob-
served in multiple insects.34,35 The premise of pRNAi is the appli-
cation of dsRNA to adult insects while the effect is observed in 
the progeny. The primary applications of pRNAi in insects thus 
far have been for the purpose of developmental studies.34,36–43 

Therefore, pRNAi in WCR may provide an additional population 
management strategy for this important insect pest. 

The first description of pRNAi in WCR identified the devel-
opmental genes hunchback and brahma as robust RNAi tar-
gets that reduced the fecundity of WCR under laboratory con-
ditions.27 Although gene targets such as hunchback and brahma 
do not cause short-term mortality in WCR adults, the pRNAi 
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gene target is not mutually exclusive to lethal RNAi effects, and 
one could envision a trait that would cause lethality in some in-
dividuals, and effective sterility in the insects that survive. Alter-
natively, pRNAi technology could be deployed in a multigene 
stack with lethal RNAi for larvae, or other control methods (i.e. 
Bt insecticidal proteins). Furthermore, pRNAi could potentially 
be used as a tool to remediate resistance to chemical insecti-
cides or Bt insecticidal proteins. Detailed characteristics of pR-
NAi response, such as effective plant dose, the minimum dura-
tion of exposure, the onset of the response, and the duration of 
pRNAi response after feeding, will determine the utility of each 
individual gene target for parental control. 

3 RNAi Mechanisms 
3.1 Potential uptake mechanisms 
The robust oral activity of dsRNA in WCR already assumes that 
the dsRNA is not degraded in the insect’s digestive system. 
Successful oral response to environmental RNAi in WCR can be 
viewed in terms of two key mechanistic components: (1) the ini-
tial uptake of dsRNA in the midgut, and (2) the systemic spread 
of the RNAi signal. The systemic RNAi signal may be the intact 
dsRNA, dsRNA processed into small interfering RNAs (siRNAs) or 
the above RNAs being chaperoned by specific proteins or other 
cellular components. A third component, which may be distinct 
from the midgut uptake, is the cellular uptake that is initiated 
when RNAi in WCR is induced by injection of dsRNA. Theoreti-
cally, these three components of RNAi response in WCR can be 
mediated by the same or different mechanisms. 

In C. elegans, a combination of systemic RNA interference 
deficient proteins 1 (SID-1) and 2 (SID-2) has been ascribed the 
function of dsRNA uptake from the environment (Fig. 1).44,45 In 

contrast, only SID-1 is implicated in the spread of RNAi from 
cell to cell.46 Expression of the C. elegans SID-1 in Drosophila S2 
cells enables passive size-independent dsRNA uptake, implying 
that SID-1 is a dsRNA-gated channel.47–49 SID-2 is primarily lo-
calized in the gut and is needed for the initial uptake of dsRNA 
of 50 bp or more from the gut lumen by intestinal cells.45 Inter-
estingly, SID-2-dependent dsRNA transport takes place under 
acidic conditions and is likely dependent on endocytosis.45 The 
function of another SID protein of C. elegans, SID-5, in RNAi by 
releasing dsRNA from the endosomes further corroborates the 
involvement of endocytosis in dsRNA uptake.50 

In insects, SID or SID-like (SIL) proteins have been identi-
fied,51,52 yet it is not clear whether the SID/SIL homologs con-
tribute to dsRNA uptake in all insects. The Tribolium and WCR 
SIL genes have similarity to SID-152; however, insect SID-2 ho-
mologs have not been identified. A recent study that included 
the SID-like silA and silC genes of WCR showed a moderate but 
‘not robust’ effect on oral RNAi response after sil gene knock-
down.53 The above results suggested that SIL proteins are not 
the sole mediators of dsRNA uptake. A study in Tribolium pos-
tulates that the best candidates for SID-like genes may be more 
closely related to the C. elegans Tag-130, which is not neces-
sarily associated with the systemic RNAi response in C. ele-
gans.52 The authors concluded that the Tribolium sil genes are 
more likely to be Tag-130 orthologs rather than SID orthologs. 
Other reports also suggest that the RNAi response is not de-
pendent on SID or SIL proteins in Orthoptera and Lepidoptera 
species.54,55 SID/SIL proteins seem to be completely absent in 
Diptera.52,56 Those results, however, do not imply that the func-
tion of SID proteins for the uptake and systemic spread of RNAi 
can be dismissed in insects altogether. In addition to clarifying 

Figure 1. Cell machinery used for uptake to process dsRNA. (1) dsRNA enters the cell via clathrin-mediated endocytosis and possibly SID-like pro-
teins. In C. elegans, SID-1 is believed to function as a dsRNA channel, and it is also necessary for the cell-to-cell transport. In insects, the specific 
functions of SID-like (SIL) proteins are unknown. The presence of dsRNA receptors (Eater and SR-CI) in Drosophila suggests that WCR may also have 
dsRNA receptors. (2) Inside the cell, dsRNA is processed into siRNAs (21–24 bp) by Dicer-2. (3) One strand of the siRNA is loaded onto AGO2,within 
the RNA-induced silencing complex (RISC). (4) Target mRNA is cleaved by the AGO2 component of the RISC.   
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the degree to which the SIL proteins participate in the systemic 
RNAi response in insects, it would be interesting to find out 
whether they are functional in the initial dsRNA uptake in the 
midgut, release from the endosome and/or cell-to-cell spread 
of the RNAi effect (Fig. 1). 

Assuming that SID-like proteins are either not involved in 
the systemic spread of the RNAi effect in WCR or not solely re-
sponsible for dsRNA uptake, other uptake and spread mecha-
nisms may be involved. Recently, Cappelle et al.57 compared rel-
ative contributions of the SIL genes (silA and silC) and endocytic 
components [clathrin heavy chain and the vacuolar H+ ATPase 
16 kD subunit (Vha16)] in Colorado potato beetle (CPB), Lepti-
notarsa decemlineata. A side-by-side comparison indicated that 
clathrin-mediated endocytosis-related genes played a more pro-
nounced role in dsRNA uptake in CPB, yet both silA and silC 
showed weak but significant effects on CPB’s oral response to 
dsRNA.57 Earlier, Xiao et al.58 demonstrated that clathrin-depen-
dent endocytosis is needed for RNAi response in Tribolium. Their 
study showed that injection-based RNAi response in Tribolium 
could be blocked by inhibitors of clathrin-dependent endocyto-
sis (bafilomycin-A1 and chlorpromazine) but not by the inhibi-
tors of other types of endocytosis. Further, Xiao et al.58 dem-
onstrated that knockdown of several Tribolium genes directly 
involved in clathrin-dependent endocytosis (clathrin heavy chain, 
clathrin coat assembly protein AP50, vacuolar H+ ATPase subunit 
H, and small GTPase Rab7) inhibited the RNAi response (see Fig. 
1 for the clathrin-mediated endocytosis of dsRNA). Earlier stud-
ies in Drosophila S2 cells also pointed to the components of the 
endocytic pathway, including clathrin heavy chain, AP50, Rab7, 
Arf72A, vacuolar sorting protein Vsp41 and the subunits of vacu-
olar H+ ATPase (VhaSFD and Vha16-1), along with scavenger re-
ceptors Sr-CI and Eater.59,60 Although identified in different spe-
cies, this set of genes may provide a basis for investigating the 
involvement of clathrin-dependent endocytosis in dsRNA up-
take and the systemic spread of RNAi in WCR. The relative con-
tribution of endocytosis versus SIL genes in dsRNA uptake and 
their genetic interactions may provide other interesting areas 
for exploration in WCR. 

3.2 Pathway genes 
The RNAi phenomenon takes advantage of the endogenous 
cellular machinery that has evolved as defense against vi-
ruses36,61 and to process endogenous regulatory non-protein-
coding RNAs [e.g. microRNAs (miRNAs) or endogenous siRNAs 
(endo-siRNAs) that can be produced from endogenous hair-
pin sequences in insects].62 The core components of the RNAi 
response in insects are similar to those described in other eu-
karyotes. One of the key differences between other animals 
and insects in the biogenesis of active RNAi molecules (siR-
NAs and miRNAs) is that in nematodes and vertebrates a sin-
gle type III RNase, Dicer, produces functional 21–23 nt RNAs 
from both long dsRNAs and miRNA precursors, while in in-
sects Dicer-1 exclusively recognizes miRNA precursors63,64 and 
Dicer-2 recognizes dsRNA (Fig. 1).65 These conclusions were 
originally based on Drosophila; subsequently, Dicer-2 was also 
identified in other insect species.66–68 An early description of 
Dicers 1 and 2 in Tribolium has speculated that the function 
of Tribolium Dicer-2 may not be as specialized as in Drosoph-
ila, based on its similarity to C. elegans Dicer.52 Experimental 
results, however, confirmed that Dicer-2 in Tribolium guides 
the processing of dsRNA into siRNA.52 Another key protein in 
dsRNA-mediated RNAi response is a type III RNase Argonaute 

2 (AGO2), the ‘slicer’ component of the RNA-induced silenc-
ing complex (RISC).69,70 One strand of the siRNA is loaded onto 
the RISC, and this siRNA guides the RISC complex to a target 
mRNA in a sequence-dependent manner, which is then cleaved 
by the AGO2 protein within the RISC (Fig. 1). 

Both Dicer-2 and AGO2 have been identified in the WCR 
transcriptome.53,71 Knockdown of these genes in both WCR lar-
vae53 and adults,71 followed by an attempted knockdown of a 
reporter gene, showed an inhibited RNAi response. These ob-
servations argue for critical roles of Dicer-2 and AGO2 in the 
dsRNA-mediated RNAi pathway in WCR. These reports also 
highlight a potential resistance mechanism in WCR to RNAi 
(i.e. downregulation or mutations in Dicer-2 or AGO2 may lead 
to lower sensitivity to dsRNA), but there may be fitness costs 
to mutations in Dicer-2, AGO2 or other RNAi pathway genes. 
As there is no described resistance to RNAi in insects, targeted 
mutations in Dicer-2, AGO2 and other pathway genes provide 
a means to assess the risk of resistance to RNAi and the asso-
ciated fitness costs. 

Proteins other than Dicer-2 and AGO2 that are important 
in the biogenesis of siRNA and the RNAi response include the 
dsRNA-binding proteins R2D2 and Loquacious (Loqs-PB, Loqs-
PD). R2D2 interacts with Dicer-2 and helps load exo-siRNAs into 
the AGO2-containing RISC complexes.72–74 Loqs has been pri-
marily associated with endo-siRNAs,75 but has also been pro-
posed to function in the processing of exogenous dsRNA.73 In 
a recent study in the mosquito Aedes aegypti, researchers re-
ported that A. aegypti lacks a Loqs-PD isoform,76 which in Dro-
sophila is specific to dsRNA processing.73,75 To compensate for 
this deficiency, the A. aegypti Loqs-PA isoform seems to inter-
act with both dsRNA and miRNA processing centers.76 R2D2 
and Loqs have not been studied in WCR, and their functions 
and involvement in exo-siRNA, endo-siRNA and miRNA may 
be distinct as well. The overlap of function of these and other 
components of the core non-coding RNA-processing machin-
ery between exo-siRNA and other RNA types may determine 
the fitness costs of resistance to dsRNA and thus influence the 
likelihood of such resistance. 

3.3 Effectiveness of small RNA species in initiating RNAi 
Upon entering an insect cell, dsRNA is processed by Dicer-2 into 
siRNAs that are ~21–23 bp in length.29,65 siRNAs of foreign ori-
gin are also called exogenous siRNAs (exo-siRNAs) to distinguish 
them from endogenous siRNAs (endo-siRNAs).62 Although the 
siRNA is the functional unit of RNAi response, dsRNA length is 
a determining factor of the environmental RNAi response in in-
sects. Studies in WCR showed that an approximate minimum 
length of 60 bp is needed to achieve a lethal RNAi effect.24,53,77,78 

This is true both in the larvae and adults of WCR, via feeding and 
injection.78 Conversely, 21 nt siRNAs, Dicer-substrate 27 bp dsR-
NAs and dsRNAs shorter than 60 bp did not initiate RNAi.24,53,77 

Interestingly, 27-mer dsRNA sequences that were extended to 
over 60 bp with a neutral double-stranded carrier sequence pro-
duced high mortality in WCR.24 Bolognesi et al.24 postulated that 
the lack of an RNAi response to short dsRNA or siRNA in WCR 
was due to absence of uptake by larval midgut cells. That con-
clusion is supported by an investigation in Tribolium, where RNAi 
response was achieved by injection of ~30 bp dsRNA fragments 
into syncytial (uncellularized) embryos but not larvae.79 How-
ever, the ineffectiveness of short dsRNAs and siRNAs may also 
be compounded by the inability of siRNAs to be loaded onto 
the RISC or ineffective Dicer processing of short dsRNAs.24,49,72  
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3.4 Systemic spread 
Western corn rootworm is remarkably efficient at eliciting a 
strong systemic RNAi response to orally delivered dsRNA. This 
raises the question of whether or not transitive RNAi is a mech-
anism that functions in WCR to amplify the RNAi response via 
production of secondary siRNA. In other organisms, second-
ary siRNA production is achieved through RNA-dependent 
RNA polymerase (RdRP) activity, with the primary dsRNA act-
ing as guides in either the primed or unprimed complementary 
RNA (cRNA) synthesis pathway.80 The resulting secondary siR-
NAs trigger a secondary gene silencing that is termed transitive 
RNAi.81 The amplification of secondary dsRNA likely reuses the 
RNA-loaded RISC complexes, dramatically magnifying the RNAi 
response. Transitive RNAi has been found in nematodes,81–83 

plants84–86 and fungi,87 but not in insects.56 In C. elegans, except 
for a small proportion of primary siRNA molecules derived from 
the Dicer products of the externally applied dsRNA, most of the 
siRNA molecules are generated through RdRP activity, follow-
ing cRNA synthesis initiated by the antisense strand of the pri-
mary siRNAs. The distribution of these secondary siRNAs exhib-
its a clear 5′→3′ antisense polarity and exceeds the 5′, but not the 
3′ sequence border of the original trigger region along the tar-
get mRNA.81–83 In plants, secondary siRNAs are also produced, 
mainly by an unprimed-cRNA synthesis pathway, and they may 
spread in both directions, surpassing both the 5′ and 3′ sequence 
boundaries of the initial target region, and cleave both the up-
stream and downstream sequences.84,88 In fungi, the spreading 
of transitive RNAi is similar to that in C. elegans, spreading only 
in the 3′ to 5′ direction along the target mRNA.87 

Early BLAST searches of the WCR transcriptome indicated 
that, as in other insects, RdRP is absent in WCR.22 This is in agree-
ment with the absence of RdRP and transitive RNAi inDrosoph-
ila.56,89 The fact that insect genomes do not have a homolog of 
RdRP, which is considered essential for secondary siRNA ampli-
fication, suggests that insects lack the transitive RNAi pathway. 
This argues that the potent RNAi response in WCR might not in-
volve transitive RNAi guided by secondary siRNA. However, it is 
also possible that transitive RNAi exists in WCR, but is dependent 
on an enzyme other than RdRP. RNAi transitivity in WCR may be 
demonstrated by the spread of silencing beyond the dsRNA trig-
ger sequence. Our unpublished work to sequence small RNAs in 
WCR fed dsRNA revealed no siRNA sequencing reads in either 
3′ or 5′ directions distal to the target sequence regions homol-
ogous to the dsRNA. These results indicate a lack of transitive 
RNAi in WCR. It is therefore remarkable that WCR mounts such 
a strong systemic RNAi response to environmental RNA without 
production of secondary siRNA. There is also a possibility that 
the secondary siRNAs generated by WCR are modified in such 
way that they are not detectable by the standard sequencing 
methods. It is therefore necessary to explore further other po-
tential secondary dsRNA production pathways, mediated by as 
yet unknown mechanisms, to explain the potency and self-sus-
taining nature of RNAi observed in insects such as WCR. 

In addition to the initial uptake in the digestive system of 
WCR, the dsRNA or siRNA must spread from cell to cell. Detec-
tion of diet-applied long dsRNA in tissues other than the gut in L. 
decemlineata and WCR described by Ivashuta et al.77 suggested 
that long dsRNA species can travel to distal tissues within in-
sects. As described above, it is believed that in insects the spread 
is not dependent on dsRNA amplification or an RNA replica-
tive mechanism, and thus intact ingested dsRNA or processed 
dsRNA must mediate the spread of the RNAi response. Although 

it was demonstrated that long dsRNA sequences are necessary 
for oral RNAi response in WCR, it is still not clear whether the 
minimal dsRNA length is critical for the initial uptake or includes 
the spread of RNAi from cell to cell. An ex vivo approach showed 
that, while the WCR midgut cells take up only long dsRNA, the 
fat body can take up both dsRNA and siRNA.77 On the other 
hand, injection of siRNA that targets vacuolar-ATPase C (a lethal 
dsRNA target) into the hemocoel of WCR did not cause lethal-
ity.78 These observations indicate that, while siRNA uptake into 
cells is possible, the lack of lethal phenotype upon siRNA injec-
tions suggests that the cellular uptake pathway for siRNA may 
not be robust enough to trigger a strong RNAi response. 

As discussed in Section 3.1, mechanisms that are involved in 
dsRNA uptake in the insect’s midgut may also be responsible for 
the systemic spread of the RNAi effect throughout the organism. 
While comparisons of oral delivery with injections and direct ex 
vivo dsRNA uptake by WCR tissues can differentiate dsRNA up-
take in the midgut versus other tissues and cells, the cell-to-cell 
spread may be different yet. Techniques involving labeling of in-
dividual molecules to monitor their spread and next-generation 
sequencing may capture the nature of the RNAi molecules that 
spread to distal tissues. To conclude, WCR exhibits a robust re-
sponse to environmental RNAi, while in the most common insect 
model, Drosophila, RNAi is not systemic. Therefore, WCR may be 
an opportune agricultural pest and model organism to investi-
gate whether the same or different mechanisms govern the ini-
tial uptake and the spread of the RNAi effect. 

3.5 RNAi competition 
One of the key questions in applying RNAi for the management 
of WCR is whether two dsRNAs can act synergistically, produce 
a linear/additive response or be antagonistic. A recent study that 
established a pigmentation-based bioassay for RNAi response 
in WCR described possible competition between dsRNAs.53 The 
authors observed that cofeeding of non-lethal dsRNA along with 
the reporter dsRNA suppressed the reporter phenotype. Those 
effects were dsRNA concentration dependent. An ex vivo exper-
iment using WCR fat body also showed that unlabeled dsRNA 
can outcompete Cy3-labeled dsRNA.77 The competition can also 
be interpreted as saturation of the dsRNA uptake. Potential com-
petition of dsRNAs has implications on how RNAi traits may be 
implemented in the field. The benefit of stacking two RNAi traits 
has to be weighed against the potential for competition. How-
ever, high doses of dsRNA surface applied to or incorporated 
into artificial diet may not reflect the dsRNA amounts that can 
be supplied by plants transformed to express dsRNA. A study in 
Tribolium demonstrated that a 100× concentration of compet-
ing dsRNA was needed to outcompete the target dsRNA.79 That 
work also suggests that the competition takes place at the level 
of dsRNA entry into the cell. Further investigations identifying 
the conditions under which two dsRNAs may compete, or how 
competition may be avoided, will aid in developing RNAi traits 
and IRM strategies for WCR.79 

The potential for dsRNA competition also poses a question 
as to whether other environmental dsRNAs such as plant-, fun-
gal-, bacterial- or virus-derived dsRNAs can compete with dsRNA 
transgenically expressed in corn targeting a specific WCR mRNA.90 

Ivashuta et al.77 began to investigate this question by identify-
ing plant-derived siRNAs in WCR that fed on plant material. That 
study showed that 12% of siRNAs (21 nt) found in WCR that fed 
on corn roots originated from corn; however, plant-derived siR-
NAs had little effect on the WCR transcriptome. These findings 
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suggest that siRNA competition is unlikely to occur at concentra-
tions encountered through consuming host plants or associated 
non-plant flora, which serves as an approximation of the concen-
trations expected in the field. Nonetheless, initial findings under-
score the need to further explore the uptake of environmental 
dsRNA by WCR and the potential for dsRNA competition. 

3.6 Stability/processing in plants 
One of the key elements for effective control of WCR in corn 
plants using RNAi is the stable expression and accumulation of 
dsRNA in the tissues consumed by WCR larvae, i.e. the roots. The 
need for accumulation of long dsRNA molecules is assumed from 
bioassays on artificial diet, which demonstrated that an effective 
RNAi response requires ingestion of 60 nt dsRNAs or longer,24,78 

and the observations that insects do not accumulate plant-pro-
duced siRNAs.77 Two transgenic RNA populations are present in 
insect-resistant RNAi corn tissues expressing dsRNA. One popu-
lation consists of intact long dsRNAs that initiate a lethal RNAi re-
sponse when consumed by WCR; the second major population 
is a mixture of siRNAs 21–24 nt in length that are generated by 
plant Dicer-like processing of the long dsRNA.22,77,78 When fed an 
artificial diet, the plant-derived siRNA sequences do not trigger 
RNAi in the insect.78 Moreover, Ivashuta et al.77 noted that plant-
fed WCR and CPB accumulate predominantly siRNAs 21–23 nt in 
size, while the dominant siRNA species in plants are 24-mers. CPB 
and WCR mainly accumulated plant-derived 21-mer siRNAs; these 
abundant 21-mers correspond to plant dsRNA loci77 and suggest 
that the 21-mers that accumulate in insects are processed from 
endogenous long plant dsRNA sequences. 

Our understanding of active RNAi species in pest insects is 
important for transgenic RNAi trait design. As siRNA does not 
effectively initiate RNAi in WCR, it is important to maintain ef-
ficacious levels of intact hairpin dsRNA (hpRNA) in corn plants 
and minimize or overcome plant Dicer-like processing within the 
plants. This can be achieved through dsRNA trigger sequence 
selection and expression optimization (Dow AgroSciences, un-
published data). In addition to expression levels, the subcellular 
localization of hpRNA may also be important. Recently, dsRNA 
was stably expressed in potato chloroplasts, resulting in protec-
tion from CPB feeding damage. This approach exploits the lack 
of RNAi machinery in plant plastids.91 

The fact that long dsRNAs are the initial RNAi triggers is also 
important for quantitative determination of the RNAi active mol-
ecules in transgenic plants.92 While quantitation of dsRNA in-
corporated into the diet or applied to the diet surface may be 
relatively straightforward, correlation of those doses with plant-
expressed hpRNA or the doses of dsRNA that insects receive 
from plants remain mostly unexplored. 

4 RNAi Risk Assessment 
4.1 Ecological risk assessment 
4.1.1 Effects on non-target arthropods 
Early characterization of the spectrum of activity of ingested in-
secticidal dsRNA has indicated a high degree of specificity to 
the target species.22,28,93 Multiple studies suggest a sequence-
specific response, with the response decreasing as the evolu-
tionary distance between species and the divergence between 
the sequences increase. The first study to address the effect of 
RNAi on non-target arthropods evaluated species-specific and 
non-specific V-ATPase dsRNA in T. castaneum, the pea aphid 
Acyrthosiphon pisum and the tobacco hornworm Manduca 
sexta by feeding unprotected dsRNA, and the fruit fly Drosoph-
ila melanogaster by feeding dsRNA protected by liposomes.93 

Target species were selectively susceptible when fed species-
specific V-ATPase dsRNA, and insignificant mortality was ob-
served when fed non-specific dsRNA. Furthermore, feeding of 
γ-tubulin dsRNA targeting the more variable region of the gene 
selectively killed species within the genus Drosophila.93 Initial 
studies of WCR target genes evaluated dsRNAs targeting pu-
tative V-ATPase-A and V-ATPase-E in the southern corn root-
worm, Diabrotica undecimpunctata howardi, L. decemlineata and 
the boll weevil Anthonomus grandis.22 Both WCR dsRNAs gener-
ated lower but significant mortality in D. undecimpunctata how-
ardi and L. decemlineata. However, no effects of WCR dsRNA 
were observed in the boll weevil.22 Lethal and sublethal effects 
of dsRNA targeting WCR Snf7 were evaluated in insects rep-
resenting ten families and four orders.28 Results indicated that 
the insecticidal activity of WCR Snf7 dsRNA was narrow. Effects 
were only observed in beetles within the Galerucinae subfamily 
of Chrysomelidae, predicting that the likelihood of adverse ef-
fects on non-target arthropods from a realistic exposure to WCR 
Snf7 dsRNA is extremely low.28 Given that the species more likely 
to be susceptible are those with the highest sequence similar-
ity,22,28 in silico evaluations (e.g. BLAST-based searches) could re-
duce animal testing for non-target impacts.94 

Additional studies evaluating the effects of WCR dsRNA on 
non-target arthropods support the low risk of adverse effects. 
Field testing of corn expressing WCR Snf7 dsRNA and Cry3Bb1 
(event MON 87411) was performed to confirm the results ob-
tained in the laboratory.95 For that purpose, the abundance of 
non-target arthropods and plant damage from non-target pests 
were evaluated in a broad range of environmental conditions and 
agricultural ecosystems. These studies demonstrated the absence 
of adverse effects on non-target arthropod communities exposed 
to MON 87411 corn.95 Studies that evaluated the effects of WCR 
dsRNA on honey bees showed similar results: experiments evalu-
ating the effects of WCR Snf7 dsRNA96 and V-ATPase-A97 in honey 
bee larvae and adults indicated no observable effects under high 
levels of exposure to dsRNA. More interestingly, no effects of 
high doses of A. mellifera-specific V-ATPase-A dsRNA were ob-
served.97 Similar results in other insect orders suggest that some 
taxonomic groups are inherently less susceptible to orally ingested 
dsRNA.21,98 These results suggest that in addition to sequence 
specificity of dsRNA, there are inherent barriers to both target-
specific and non-target RNAi responses.18,21,97,99 

Currently, the ecological risk assessment used for the evalu-
ation of insect-protected genetically engineered (GE) crops (e.g. 
plants expressing insecticidal proteins from B. thuringiensis) pro-
vides a basis for evaluating potential hazards for RNAi-mediated 
insect-protected crops.100,101 However, because of the unique 
mode of action of RNAi, modifications to the current risk as-
sessment framework have been suggested. For example, eco-
logically important non-target organisms that are closely related 
to the target species should be most closely evaluated, as they 
are more likely to be susceptible.28,94 There is also a consensus 
among risk assessors that each dsRNA used for in planta RNAi 
should be tested for hazards to non-target organisms,18,101 as is 
routinely done for other insecticidal GE traits.94 Although there is 
much disagreement, some have raised concerns that off-target 
gene knockdown can occur owing to random sequence homol-
ogies,102,103 as well as potential effects on immune viral response 
of non-target organisms. However, insects are continuously ex-
posed to non-insect dsRNAs from a variety of sources under nat-
ural conditions. Therefore, dsRNA that is targeted at silencing 
genes from insect pests will have a similar likelihood of affecting 
off-target genes or arthropod immune response compared with 
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other occurring environmental dsRNA molecules naturally pro-
duced by plants or that have been genetically engineered into 
plants to provide viral defense or other traits. As mentioned in 
Section 3.5, WCR readily uptake and process endogenous dsRNA 
from wild-type plants, without noticeable changes to their tran-
script profiles.77 These observations are yet to be replicated in 
other species, although given that RNAi IR traits are in the very 
initial stages of their deployment, generation of additional data 
that examine RNAi effects on non-target arthropods will further 
inform the assessments of environmental risks. 

4.1.2 Interaction between Bt and RNAi 
Regulators in the United States and other countries require stud-
ies to investigate the potential for synergistic interaction be-
tween insecticidal GE traits when they are combined in individ-
ual plants. If little or no interaction is detected between different 
traits, studies of the effects of the individual traits on non-target 
organisms can be used for the risk assessment of the combina-
tion.104,105 Because dsRNA for WCR management will likely be 
expressed in corn in combination with Bt insecticidal proteins, 
the potential interaction between Bt and dsRNA is considered 
part of the environmental risk assessment. To date, only one 
study has evaluated the potential interaction between a Cry pro-
tein and a dsRNA (Cry3Bb1 and WCR Snf7 dsRNA).23 The poten-
tial interaction was evaluated with D. undecimpunctata howardi 
using two approaches: (1) evaluating each substance alone and 
in combination over three different response levels, and (2) test-
ing the potential for a fixed sublethal concentration of one com-
ponent to reduce the median concentration (LC50) of the other. 
Both approaches demonstrated that there was no synergy be-
tween Cry3Bb1 and WCR Snf7 dsRNA expressed in MON 87411, 
indicating that they act independently and supporting the test-
ing of the two materials independently for non-target arthro-
pod risk assessment purposes.23 As the modes of action of Bt 
proteins (binding to midgut receptors, followed by pore forma-
tion and cell lysis)106 and of dsRNA (depletion of target mRNA) 
107 are not related, non-additive effects of combining Bt proteins 
with RNAi are not anticipated. Additional studies of RNA hairpins 
in combination with WCR-active Bt trait proteins would further 
confirm the independent action of these agents. 

4.1.3 dsRNA environmental stability 
An important part of the ecological risk assessment of insec-
ticidal molecules is determining the potential for residues of 
the pesticidal substance to persist in the environment and po-
tentially affect populations of non-target species.94,108 The en-
vironmental stability of the active pesticidal molecule is exam-
ined to determine whether there are possible long-term risks to 
susceptible non-target organisms; for Bt crops, the analyses in-
clude testing of soil and crop residues for their activity against 
the target pest.94 A laboratory degradation study was performed 
by Dubelman et al.109 to determine the biodegradation poten-
tial of WCR Snf7 dsRNA derived from the Monsanto corn line 
MON 87411. Researchers tested soil with different physicochem-
ical properties, including silt loam, loamy sand and clay loam, 
and exposed D. undecimpunctata howardi to dsRNA from in-
cubated soils to evaluate biological activity (i.e. insect mortal-
ity). That study demonstrated that Snf7 dsRNA was not detect-
able after 48 h in the three soil types tested. The half-life of Snf7 
dsRNA was less than 30 h,109–111 which is in the range of 1 day 
to several days half-life generally reported for Bt proteins.112,113 

Additionally, D. undecimpunctata howardi mortality was unde-
tectable within 2 days.109 Those results suggest that Snf7 dsRNA 

and other dsRNAs are unlikely to persist and accumulate in the 
soil.109 If soil persistence were to be demonstrated, it would be 
necessary to understand whether any exposed beneficial soil or-
ganisms are sensitive to the dsRNA, possessing both the neces-
sary RNAi machinery to take up and process the molecule and 
a matching target gene sequence. 

Laboratory studies with Bt insecticidal proteins have shown 
that, even though the half-life of the proteins in the environ-
ment ranges from less than one day to several days to more 
than a month,112,113 depending on the protein and environmen-
tal conditions,112,113 some proteins can bind to clay particles in 
the soil.114 In its regulatory requirements, the EPA concluded 
that enhanced stability and buildup over continuous cultivation 
is not a concern for plants expressing Bt proteins.94,115 Experi-
ments evaluating dsRNA stability in honey bee diet indicated 
that dsRNA could bind to royal jelly components,97 suggest-
ing that results similar to those reported for Bt could occur with 
dsRNA. Interestingly, binding to other molecules could actually 
make the dsRNA unavailable for non-target species, thereby re-
ducing the risk of exposure.97 

4.2 Insect resistance management 
Transgenic crops that produce substances that provide protec-
tion from insect feeding are vulnerable to the evolution of resis-
tance in the target insect pest population, resulting in a reduc-
tion in the durability of the insect resistance substance(s) and 
the associated loss of benefits. Resistance can arise in a target 
pest population through the sequestering or degradation of the 
insecticidal substance, the disabling of any of the steps in the 
mode of action, reduction in the sensitivity of the target site or 
compensatory changes that circumvent the effects of the sub-
stance. In the case of RNAi, one can postulate any number of 
potential resistance mechanisms, although no resistance mech-
anism has yet been identified. For example, resistance to dietary 
dsRNA could arise from reduced uptake when feeding (perhaps 
by avoiding feeding on plant tissues with high levels of dsRNA), 
increased degradation of the molecule in the insect digestive 
system, barriers to absorption of dsRNA by cells, decreased pro-
duction of or processing by Dicer ribonucleases, reduced rec-
ognition by the RISC complex of siRNA molecules, failure of the 
RISC complex to degrade the target mRNA or blocking of sys-
temic spread of the RNAi. Insects could also develop compensa-
tory mechanisms to circumvent the gene silencing by increasing 
transcription rates of the target gene sequence or upregulat-
ing other genes that can perform the same or similar functions 
of the target (silenced) gene. Adaptations could also involve 
point mutations in the target gene sequence so that the 21-mer 
matches with the mRNA are reduced or eliminated. 

Target-site-mediated resistance seems less likely to occur 
given that relatively long dsRNA sequences are transgenically 
expressed for downregulation of WCR essential genes. In the 
nematode C. elegans, RNA-deficient mutants have been iden-
tified in core pathway genes116 as well as genes involved in the 
systemic spread of RNAi.117 Analogous RNAi-resistant mutants 
have yet to be identified in WCR. However, one can envision that 
mutations in RNA uptake mechanisms might occur, but it is as 
yet unknown in WCR whether multiple or compensatory routes 
to dsRNA uptake exist (e.g. SID-like systems and endocyto-
sis).53 Given that RNAi is involved in defense against exogenous 
dsRNA, perhaps another risk to the durability of RNAi traits to 
control rootworms might be selection pressure applied by per-
sistent virus exposure resulting in mutations to core RNAi ma-
chinery.118 Resistance mechanisms most likely to arise in insect 
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populations will likely depend on the number of mutations in-
volved in gene sequences and regulatory elements, as well as the 
fitness costs entailed. Fitness costs associated with reduced RNAi 
uptake could be related to reduced ability to feed or uptake nu-
trients, reduced activity of the RNAi machinery could lead to in-
creased susceptibility to viral diseases, changes in gene regula-
tion could alter other cellular metabolic functions and changes 
in target gene sequence could reduce the activity or specificity 
of the protein produced. 

Traditionally, delays in insect pest resistance evolution to in-
sect-protected GE crops are achieved by (1) planting refuges 
[crops that do not contain the pesticidal substances and there-
fore allow survival of insects that are susceptible to the pesticidal 
substance(s)] and (2) combining multiple insecticidal substances 
with different modes of action.119 Refuges are cropping areas 
where there is no selection pressure for resistance to a given trait 
and therefore that allow survival of insects that do not possess 
resistance alleles at high frequencies. These susceptible insects 
are intended to be available to mate with resistant insects that 
may survive in insect-protected GE crops so that their progeny 
are heterozygous for resistance alleles. If the heterozygotes are 
also controlled by the insect-protected GE crop, the spread of 
initially rare resistance alleles through a pest population can be 
greatly delayed. If the insect-protected GE crop simultaneously 
produces two or more insecticidal substances with different 
modes of action such that cross-resistance is less likely to occur, 
insects that carry resistance alleles to one of the substances will 
continue to be controlled by the other substance(s) and fail to 
pass resistance alleles on to the next generation. The combina-
tion of refuges and insect-protected GE crops that produce mul-
tiple insecticidal substances can be an effective resistance man-
agement strategy,120 and there are many examples today where 
this strategy is implemented using different Bt proteins.121 Com-
binations of Bt proteins for corn rootworm management in corn 
(e.g. Cry3Bb1 + Cry34Ab1/Cry35Ab1 and Cry34Ab1/Cry35Ab1 
+ mCry3A) have been deployed for this reason, although their 
long-term effectiveness is likely to be reduced in areas where 
resistance to one of the components is established in the tar-
get pest populations.12 

It has been recognized that RNAi for corn rootworm control 
should be combined with other modes of action to promote 
durability. The first likely commercialized event, MON 87411, 
produces both WCR Snf7 dsRNA and Cry3Bb1 Bt protein.23 The 
commercial concept combines these two modes of action with 
Cry34Ab1/Cry35Ab1 to improve durability, considering that 
field resistance to Cry3Bb1 has been documented at many lo-
cations across the US Corn Belt.12,122 There is no information yet 
on whether RNAi events provide high-dose protection in corn. 
High dose has been defined by EPA as causing 99.99% larval 
mortality under field conditions such that resistance to the event 
would be expected to be functionally recessive (US EPA 1998).123 

For corn rootworm, larval mortality is difficult to measure directly 
in the field, and relative adult emergence, which has been used 
as a proxy, is confounded by variable larval infestation rates and 
variable biotic and abiotic mortality factors.124–126 Should high-
dose RNAi events be developed for WCR, they would be ex-
pected to provide higher durability to the IRM stack. 

Parental RNAi (pRNAi) that prevents oviposition or includes 
loss of egg viability has the potential to bring further durabil-
ity benefits to transgenic crops that use RNAi and other mech-
anisms for insect protection. pRNAi prevents exposed insects 
from producing progeny and therefore from passing on to the 
next generation any alleles that confer resistance to the other 

pesticidal substance(s) (e.g. Bt). Therefore, pRNAi can extend the 
durability of insect-protected transgenic crops when combined 
with one or more Bt proteins (or other insecticidal substances) 
targeting the same pest populations. This benefit arises because 
insects that are resistant to the Bt protein will occur as a higher 
proportion of the population in the transgenic crop compared 
with the refuge crop. If the ratio of resistance alleles to suscep-
tible alleles that are passed on to the next generation is lower in 
the presence of pRNAi than in the absence of pRNAi, the evolu-
tion of resistance will be slowed. Transgenic crops that produce 
parental active dsRNA in addition to an insecticidal protein can 
be much more durable compared with transgenic crops that pro-
duce only one insecticidal trait. 

With Snf7 and other gene targets being investigated for po-
tential corn rootworm control applications, an important con-
sideration is the potential for resistance to one RNAi to confer 
cross-resistance to other RNAi molecules. Resistance mecha-
nisms that disrupt the RNAi machinery would seem more likely 
to lead to resistance throughout the whole class of dsRNA-me-
diated interference. Whereas, more specific mechanisms such as 
altered target gene sequence or upregulation of compensating 
genes would not confer cross-resistance to RNA interference of 
other target genes. Currently, it is not known what mechanisms 
of resistance will develop in the field, and therefore it is difficult 
to predict cross-resistance scenarios. It is possible that simulta-
neous expression of two or more RNAi molecules could repre-
sent multiple modes of action against target species, if resistance 
is sequence-specific and therefore cross-resistance will be low; 
however, if resistance involves common RNAi machinery, cross-
resistance will be high. 

5 Challenges and Future Directions 
Western corn rootworm is a highly adaptive pest in its ability to 
overcome insect management practices, including transgenic 
Bt traits.12,122,127 Currently, there are only two distinct modes of 
action, Cry3 and Cry34/35 proteins derived from Bt, commer-
cialized as insect resistance traits targeting WCR.10 Pyramided 
Cry3Bb and Cry34/35Ab1 corn hybrids have been commer-
cialized in SmartStax® hybrids for resistance management of 
WCR; however, WCR field-evolved resistance to Cry3-based IR 
traits has likely increased selection pressure against WCR pop-
ulations for resistance to Cry34/35. This situation has created 
an urgent need for new modes of action as alternatives to Cry3 
and Cry34/35 traits. The successful demonstration of transgenic 
dsRNA to provide corn root protection against WCR feeding 
damage22 has catalyzed industry-wide interest in RNAi as a novel 
mode of action to combine with Bt technology to reduce the 
probability of field-evolved resistance to currently marketed 
traits. Recent work targeting Snf724–26,109 as well as vATPases22 

provides reason for optimism that RNAi will soon be successfully 
deployed in commercial hybrids resistant to damage by WCR. 

Several key uncertainties remain that represent potential hur-
dles to realizing the commercial application of RNAi as a mode 
of action to pyramid with traits based on Bt proteins: 

1. RNAi trait performance over multiple field seasons and com-
mercial hybrid yield potential has yet to be reported. 

2. The regulatory framework to assess safety of dsRNA insec-
ticidal traits may differ in certain regards from that estab-
lished for Bt-based insecticidal traits. Perspectives have been 
published indicating that the current framework for environ-
mental safety assessment of protein-based traits is appropri-
ate for the assessment of RNAi crops.18,101 In the context of 
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mammalian safety, RNA is a component of all food and feed, 
and is generally regarded as safe. Petrick et al.128 recently re-
viewed human health safety studies designed to assess bio-
tech traits and proposed that the currently recognized princi-
ples for the safety evaluation of biotechnology-derived crops 
are applicable to RNA-based traits such as RNAi. Recently, 
the US EPA issued a registration for transformation event 
MON 87411, which produces the Snf7 dsRNA in addition to 
Cry3Bb1 Bt protein, following extensive review of mamma-
lian toxicology and the environmental risk assessment. That 
event has been deregulated by the US Department of Agri-
culture and has completed review at the US Food and Drug 
Administration for food and feed safety. Event MON 87411 
has also completed regulatory reviews for food, feed and 
cultivation in Canada. At the time of writing, regulatory ap-
provals for food and/or feed use are also in place in Austra-
lia, New Zealand, and Taiwan.129 

3. As with all insecticides, selection for field-evolved resistance 
is a major concern. Resistance to dsRNA traits could result 
from target-site mutation or mutations in RNAi pathways for 
dsRNA uptake, processing of dsRNA into siRNA and spread 
of the RNAi effect. More research on the potential for resis-
tance to RNAi traits to be selected for in the laboratory or to 
evolve in a field setting will help us to understand the long-
term value of RNAi in the context of insect resistance man-
agement and trait durability. Pyramiding RNAi-based traits 
with protein-based corn-rootworm-active traits will help to 
mitigate these resistance risks. 

To conclude, first-generation RNAi traits for WCR control are 
likely to be available to growers in the near future. Opportuni-
ties to improve upon the first-generation of RNAi traits for con-
trol of corn rootworm will aim at trait performance attributes 
such as root protection, adult emergence and high dose poten-
tial. Other possibilities include use of parental RNAi for trans-
generational control of rootworm populations, as well as inno-
vation for topical applications or baits.   
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