89 research outputs found

    Compartment-specific multiomic profiling identifies SRC and GNAS as candidate drivers of epithelial to mesenchymal transition in ovarian carcinosarcoma

    Get PDF
    BACKGROUND: Ovarian carcinosarcoma (OCS) is an exceptionally aggressive and understudied ovarian cancer type harbouring distinct carcinomatous and sarcomatous compartments. Here, we seek to identify shared and compartment-specific events that may represent potential therapeutic targets and candidate drivers of sarcomatous compartment formation through epithelial to mesenchymal transition (EMT).METHODS: We performed multiomic profiling (exome sequencing, RNA-sequencing, microRNA profiling) of paired carcinomatous and sarcomatous components in 12 OCS cases. RESULTS: While paired sarcomatous and carcinomatous compartments demonstrate substantial genomic similarities, multiple loci are recurrently copy number-altered between components; regions containing GNAS and SRC are recurrently gained within the sarcomatous compartment. CCNE1 gain is a common event in OCS, occurring more frequently than in high grade serous ovarian carcinoma. Transcriptomic analysis suggests increased MAPK activity and subtype switching toward poor prognosis HGSOC-derived transcriptomic subtypes within the sarcomatous component. The two compartments show global differences in microRNA profiles, with differentially expressed microRNAs targeting EMT-related genes (SIRT1, ZEB2) and regulators of pro-tumourigenic pathways (TGFβ, NOTCH); chrX is a highly enriched target of these microRNAs, and is also frequently deleted across samples. The sarcomatous component harbours significantly fewer CD8-positive cells, suggesting poorer immune engagement. CONCLUSION: CCNE1 gain and chrX loss are frequent in OCS. SRC gain, increased GNAS expression and microRNA dysregulation represent potential mechanisms driving sarcomatous compartment formation.<br/

    Clinicopathological Determinants of Recurrence Risk and Survival in Mucinous Ovarian Carcinoma

    Get PDF
    Mucinous ovarian carcinoma (MOC) is a unique form of ovarian cancer. MOC typically presents at early stage but demonstrates intrinsic chemoresistance; treatment of advanced-stage and relapsed disease is therefore challenging. We harness a large retrospective MOC cohort to identify factors associated with recurrence risk and survival. A total of 151 MOC patients were included. The 5 year disease-specific survival (DSS) was 84.5%. Risk of subsequent recurrence after a disease-free period of 2 and 5 years was low (8.3% and 5.6% over the next 10 years). The majority of cases were FIGO stage I (35.6% IA, 43.0% IC). Multivariable analysis identified stage and pathological grade as independently associated with DSS (p p < 0.001). Grade 1 stage I patients represented the majority of cases (53.0%) and demonstrated exceptional survival (10 year DSS 95.3%); survival was comparable between grade I stage IA and stage IC patients, and between grade I stage IC patients who did and did not receive adjuvant chemotherapy. At 5 years following diagnosis, the proportion of grade 1, 2 and 3 patients remaining disease free was 89.5%, 74.9% and 41.7%; the corresponding proportions for FIGO stage I, II and III/IV patients were 91.1%, 76.7% and 19.8%. Median post-relapse survival was 5.0 months. Most MOC patients present with low-grade early-stage disease and are at low risk of recurrence. New treatment options are urgently needed to improve survival following relapse, which is associated with extremely poor prognosis

    The inflammatory chemokine Cxcl18b exerts neutrophil-specific chemotaxis via the promiscuous chemokine receptor Cxcr2 in zebrafish

    Get PDF
    Cxcl18b is a chemokine found in zebrafish and in other piscine and amphibian species. Cxcl18b is a reliable inflammatory marker; however, its function is yet to be elucidated. Here, we found that Cxcl18b is chemotactic towards neutrophils, similarly to Cxcl8a/Interleukin-8, the best characterised neutrophil chemoattractant in humans and teleosts. Like Cxcl8a, Cxcl18b-dependent recruitment required the chemokine receptor Cxcr2, while it was unaffected by depletion of the other two neutrophil receptors cxcr1 and cxcr4b. To visualise cxcl18b induction, we generated a Tg(cxcl18b:eGFP) reporter line. The transgene is induced locally upon bacterial infection with the fish pathogen Mycobacterium marinum, but strikingly is not directly expressed by infected cells. Instead, cxcl18b is induced by non-phagocytic uninfected cells that compose the stroma of the granulomas, typical inflammatory lesions formed upon mycobacterial infections. Together, these results suggest that Cxcl18b might be an important contributor to neutrophil chemotaxis in the inflammatory microenvironment and indicate that the zebrafish model could be explored to further investigate in vivo the biological relevance of different Cxcl8-like chemokine lineages

    Reactive oxygen species generation by bovine blood neutrophils with different CXCR1 (IL8RA) genotype following Interleukin-8 incubation

    Get PDF
    Background: Associations between polymorphisms in the bovine CXCR1 gene, encoding the chemokine (C-X-C motif) receptor 1 (IL8RA), and neutrophil traits and mastitis have been described. In the present study, blood neutrophils were isolated from 20 early lactating heifers with different CXCR1 genotype at position 735 or 980. The cells were incubated with different concentrations of recombinant bovine IL-8 (rbIL-8) for 2 or 6 h and stimulated with phorbol 12-myristate 13-acetate (PMA) or opsonized zymosan particles (OZP). Potential association between CXCR1 genotype and production of reactive oxygen species (ROS) was studied. Results: Although on single nucleotide polymorphisms (SNPs) may potentially affect CXCR1 function, SNPs c.735C > G and c.980A > G showed no association with ROS production with or without incubation of rbIL-8. Neutrophils incubated with rbIL-8 for 2 or 6 h showed higher PMA- and lower OZP-induced ROS production compared to control without rbIL-8. Conclusions: In the present study no association could be detected between superoxide production by isolated bovine neutrophils during early lactation and CXCR1 gene polymorphism. IL-8 showed to possess inhibitory effects on ROS generation in bovine neutrophils

    Lower Respiratory Tract Infection Induced by a Genetically Modified Picornavirus in Its Natural Murine Host

    Get PDF
    Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC0, induces lower respiratory tract infections in mice. After intranasal vMC0 inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC0, compared with those inoculated with vehicle or UV-inactivated vMC0, exhibited increased pulmonary expression of interferon (IFN-α, IFN-β, IFN-λ), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC0 by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans
    corecore