1,644 research outputs found

    Alignment and Aperture Scan at the Fermilab Booster

    Full text link
    The Fermilab booster has an intensity upgrade plan called the Proton Improvement plan (PIP). The flux throughput goal is 2E17 protons/hour, which is almost double the current operation at 1.1E17 protons/hour. The beam loss in the machine is going to be the source of issues. The booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector. Several percent of the beam is lost within 3 msec after the injection. The aperture at injection energy was measured and compared with the survey data. The magnets are going to be realigned in March 2012 in order to increase the aperture. The beam studies, analysis of the scan and alignment data, and the result of the magnet moves will be discussed in this paper.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Information theoretic approach to interactive learning

    Full text link
    The principles of statistical mechanics and information theory play an important role in learning and have inspired both theory and the design of numerous machine learning algorithms. The new aspect in this paper is a focus on integrating feedback from the learner. A quantitative approach to interactive learning and adaptive behavior is proposed, integrating model- and decision-making into one theoretical framework. This paper follows simple principles by requiring that the observer's world model and action policy should result in maximal predictive power at minimal complexity. Classes of optimal action policies and of optimal models are derived from an objective function that reflects this trade-off between prediction and complexity. The resulting optimal models then summarize, at different levels of abstraction, the process's causal organization in the presence of the learner's actions. A fundamental consequence of the proposed principle is that the learner's optimal action policies balance exploration and control as an emerging property. Interestingly, the explorative component is present in the absence of policy randomness, i.e. in the optimal deterministic behavior. This is a direct result of requiring maximal predictive power in the presence of feedback.Comment: 6 page

    Quasi-Homogeneous Thermodynamics and Black Holes

    Get PDF
    We propose a generalized thermodynamics in which quasi-homogeneity of the thermodynamic potentials plays a fundamental role. This thermodynamic formalism arises from a generalization of the approach presented in paper [1], and it is based on the requirement that quasi-homogeneity is a non-trivial symmetry for the Pfaffian form δQrev\delta Q_{rev}. It is shown that quasi-homogeneous thermodynamics fits the thermodynamic features of at least some self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is suggested by black hole thermodynamics. Then, some existing results involving self-gravitating systems are also shortly discussed in the light of this thermodynamic framework. The consequences of the lack of extensivity are also recalled. We show that generalized Gibbs-Duhem equations arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An heuristic link between this generalized thermodynamic formalism and the thermodynamic limit is also discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the original one

    Simultaneous X-ray and Ultraviolet Observations of the SW Sextantis Star DW Ursae Majoris

    Get PDF
    We present the first pointed X-ray observation of DW Ursae Majoris, a novalike cataclysmic variable (CV) and one of the archetype members of the SW Sextantis class, obtained with the XMM-Newton satellite. These data provide the first detailed look at an SW Sex star in the X-ray regime (with previous X-ray knowledge of the SW Sex stars limited primarily to weak or non-detections in the ROSAT All Sky Survey). It is also one of only a few XMM-Newton observations (to date) of any high mass transfer rate novalike CV, and the only one in the evolutionarily important 3-4 hr orbital period range. The observed X-ray spectrum of DW UMa is very soft, with ~95% of the detected X-ray photons at energies <2 keV. The spectrum can be fit equally well by a one-component cooling flow model, with a temperature range of 0.2-3.5 keV, or a two-component, two-temperature thermal plasma model, containing hard (~5-6 keV) and soft (~0.8 keV) components. The X-ray light curve of DW UMa shows a likely partial eclipse, implying X-ray reprocessing in a vertically extended region, and an orbital modulation, implying a structural asymmetry in the X-ray reprocessing site (e.g., it cannot be a uniform corona). We also obtained a simultaneous near-ultraviolet light curve of DW UMa using the Optical Monitor on XMM-Newton. This light curve is similar in appearance to published optical-UV light curves of DW UMa and shows a prominent deep eclipse. Regardless of the exact nature of the X-ray reprocessing site in DW UMa, the lack of a prominent hard X-ray total eclipse and very low fraction of high energy X-rays point to the presence of an optically and geometrically thick accretion disk that obscures the boundary layer and modifies the X-ray spectrum emitted near the white dwarf

    Measurements of the effect of collisions on transverse beam halo diffusion in the Tevatron and in the LHC

    Full text link
    Beam-beam forces and collision optics can strongly affect beam lifetime, dynamic aperture, and halo formation in particle colliders. Extensive analytical and numerical simulations are carried out in the design and operational stage of a machine to quantify these effects, but experimental data is scarce. The technique of small-step collimator scans was applied to the Fermilab Tevatron collider and to the CERN Large Hadron Collider to study the effect of collisions on transverse beam halo dynamics. We describe the technique and present a summary of the first results on the dependence of the halo diffusion coefficient on betatron amplitude in the Tevatron and in the LHC.Comment: 4 pages, 2 figures. Submitted to the Proceedings of the ICFA Mini-Workshop on Beam-beam Effects in Hadron Colliders (BB2013), Geneva, Switzerland, 18-22 March 201

    A Class of Eccentric Binaries with Dynamic Tidal Distortions Discovered with Kepler

    Full text link
    We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally-induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at time scales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally-varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally-induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class and discuss the work required to accurately model these systems.Comment: 13 pages, submitted to Ap

    Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations

    Get PDF
    Context: The Kepler space mission is reaching continuous observing times long enough to start studying the fine structure of the observed p-mode spectra. Aims: In this paper, we aim to study the signature of stellar evolution on the radial and p-dominated l=2 modes in an ensemble of red giants that show solar-type oscillations. Results: We find that the phase shift of the central radial mode (eps_c) is significantly different for red giants at a given large frequency separation (Dnu_c) but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Dnu_c, eps_c) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between eps_c and Dnu_c for RGB stars and no indication that eps_c depends on other properties of these stars. It appears that the difference in eps_c between the two populations becomes if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, Dnu to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial modes for a sequence of RG models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Dnu is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Dnu. Finally, we investigate the signature of the evolutionary stage on the small frequency separation and quantify the mass dependency of this seismic parameter.Comment: 12 pages, 9 figures, accepted for publication in A&
    corecore