14 research outputs found
Spatially clustered count data provide more efficient search strategies in invasion biology and disease control.
Geographic profiling, a mathematical model originally developed in criminology, is increasingly being used in ecology and epidemiology. Geographic profiling boasts a wide range of applications, such as finding source populations of invasive species or breeding sites of vectors of infectious disease. The model provides a cost-effective approach for prioritising search strategies for source locations and does so via simple data in the form of the positions of each observation, such as individual sightings of invasive species or cases of a disease. In doing so, however, classic geographic profiling approaches fail to make the distinction between those areas containing observed absences and those areas where no data were recorded. Absence data are generated via spatial sampling protocols but are often discarded during the inference process. Here we construct a geographic profiling model that resolves these issues by making inferences via count data - analysing a set of discrete sentinel locations at which the number of encounters has been recorded. Crucially, in our model this number can be zero. We verify the ability of this new model to estimate source locations and other parameters of practical interest via a Bayesian power analysis. We also measure model performance via real-world data in which the model infers breeding locations of mosquitoes in bromeliads in Miami-Dade County, Florida. In both cases, our novel model produces more efficient search strategies by shifting focus from those areas containing observed absences to those with no data, an improvement over existing models that treat these areas equally. Our model makes important improvements upon classic geographic profiling methods, which will significantly enhance real-world efforts to develop conservation management plans and targeted interventions
Vulnerability of Brazilian municipalities to hantavirus infections based on multi‑criteria decision analysis
Background: Hantavirus infection is an emerging zoonosis transmitted by wild rodents. In Brazil, high case-fatality rates among humans infected with hantavirus are of serious concern to public health authorities. Appropriate preventive measures partly depend on reliable knowledge about the geographical distribution of this disease. Methods: Incidence of hantavirus infections in Brazil (1993–2013) was analyzed. Epidemiological, socioeconomic, and demographic indicators were also used to classify cities’ vulnerability to disease by means of multi-criteria decision analysis (MCDA). Results: From 1993 to 2013, 1752 cases of hantavirus were registered in 16 Brazilian states. The highest incidence of hantavirus was observed in the states of Mato Grosso (0.57/100,000) and Santa Catarina (0.13/100,000). Based on MCDA analysis, municipalities in the southern, southeastern, and midwestern regions of Brazil can be classified as highly vulnerable. Most municipalities in northern and northeastern Brazil were classified as having low vulnerability to hantavirus cardiopulmonary syndrome. Conclusions: Although most human infections by hantavirus registered in Brazil occurred in the southern region of the country, a greater vulnerability to hantavirus was found in the Brazilian Midwest. This result reflects the need to strengthen surveillance where the disease has thus far gone unreported