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Abstract

Geographic profiling, a mathematical model originally developed in criminology, is increasingly 

being used in ecology and epidemiology. Geographic profiling boasts a wide range of 

applications, such as finding source populations of invasive species or breeding sites of vectors of 

infectious disease. The model provides a cost-effective approach for prioritising search strategies 

for source locations and does so via simple data in the form of the positions of each observation, 

such as individual sightings of invasive species or cases of a disease. In doing so, however, classic 

geographic profiling approaches fail to make the distinction between those areas containing 

observed absences and those areas where no data were recorded. Absence data are generated via 

spatial sampling protocols but are often discarded during the inference process. Here we construct 

a geographic profiling model that resolves these issues by making inferences via count data – 

analysing a set of discrete sentinel locations at which the number of encounters has been recorded. 

Crucially, in our model this number can be zero. We verify the ability of this new model to 

estimate source locations and other parameters of practical interest via a Bayesian power analysis. 

We also measure model performance via real-world data in which the model infers breeding 

locations of mosquitoes in bromeliads in Miami-Dade County, Florida. In both cases, our novel 

model produces more efficient search strategies by shifting focus from those areas containing 

observed absences to those with no data, an improvement over existing models that treat these 

areas equally. Our model makes important improvements upon classic geographic profiling 

methods, which will significantly enhance real-world efforts to develop conservation management 

plans and targeted interventions.
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Introduction

Geographic profiling is a tool originally used in criminology in cases of serial crime such as 

murder, rape or arson, to find the most likely area(s) for the offender’s anchor point(s) (usually a 

home, but sometimes a workplace or relative’s home), using as input the locations of crimes 

associated with that offender (Rossmo 2000). It is designed to deal with cases of information 

overload, where there are insufficient resources to deal with the large numbers of suspects typical 

in investigations of serial crime (for example, the Yorkshire Ripper enquiry in the UK generated 

268,000 names and 5.4 million vehicle registrations (Doney 1990)).

In criminology, geographic profiling uses the spatial locations associated with the crimes (e.g. 

victim encounter sites, body dump sites, weapon dump sites) to produce a 3D probability surface 

that can be overlaid on a map of the study area to produce a geographic profile. Suspects are 

prioritised according to the height of their anchor point(s) on the surface (Rossmo 2000). 

Geographic profiling is widely used by law enforcement agencies around the world (Rossmo 

2012), but more recently has been applied to cases in ecology and epidemiology where spatial 

locations are associated with sightings of an invasive species or an instance of an infectious 

disease (Table 1). Geographic profiling boasts a variety of successful applications from invasion 

biology (Stevenson et al. 2012, Papini et al. 2013, Faulkner et al. 2016, Cerri et al. 2019, Heald et 

al. 2019) to animal behaviour (Le Comber et al. 2006, Martin et al. 2009, Raine et al. 2009, 

Faulkner et al. 2015), human–wildlife conflict (Faulkner et al. 2018, Struebig et al. 2018) and 

epidemiology (Le Comber et al. 2011, Verity et al. 2014, Smith et al. 2015).  

There are a number of geographic profiling models, from the Criminal Geographic Targeting 

(CGT) algorithm used in criminology (Rossmo 1993, Rossmo et al. 2014, Butkovic et al. 2018) to 

explicitly Bayesian models (O’Leary 2009, 2010, Mohler and Short 2012) and, more recently, the 

Dirichlet Process Mixture (DPM) model (Verity et al. 2014, Faulkner et al. 2016). However, all 

these models have one thing in common in that they use point-pattern data only: a finite collection A
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of longitudinal/latitudinal points each associated with a single instance of crime or sighting of an 

invasive species etc. 

By considering count data, we can make an important distinction between evidence of absence and 

absence of evidence. In an ecological context, this might relate to areas where traps were set but 

failed to catch any animals and areas where no traps were set; in criminology, between areas 

where crimes could have been committed but were not and areas where no information was 

recorded (such as outside a jurisdictional boundary); and in epidemiology, between areas where 

people were tested and found negative, and areas where no-one was tested. 

There are existing models in ecology that can use count data to infer parameters of biological 

interest. For example, spatially explicit capture recapture models aim to estimate the underlying 

population density in a study area given the locations of discrete traps with associated counts 

(Borchers and Efford 2008, Chandler and Royle 2013). These models even go so far as to estimate 

an individual’s “activity centre” a latent variable synonymous to “source location” or “anchor 

point” used throughout geographic profiling literature. These models, however, assume each 

individual from a species is associated with its own unique activity centre of which are estimated 

from the data. The DPM model however, does not assume this and is built to deal with the 

complex problem of partitioning individuals into spatial clusters of which each cluster is governed 

by a single “source location” (Verity et al. 2014).

In ecology, it is often common for count data to exhibit over-dispersion, that is, data stray from the 

assumed equal mean and variance, a standard to those modelling count data via some underlying 

expectation for a Poisson density. This over-dispersion can be caused by a range of factors such as 

sampling, aggregation, environmental variability or a combination of the above (Lindén and 

Mäntyniemi 2011). As an alternative, count data can be modelled such that variance in counts is a 

linear or quadratic function of the mean (Ver Hoef and Boveng 2007). Hence some consideration 

is needed for over-dispersion when building a geographic profiling model that makes inferences 

via count data. 

In this study, we address the gap in existing geographic profiling models by developing a fully 

Bayesian geographic profiling model for analysing count data. We do this by calculating the A
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likelihood of a particular number of crimes (or captures, or positive tests) at a given location; of 

which, can include zero. In addition to including count data in the model’s likelihood, we will 

demonstrate how this leads to, for the first time, an estimation of the expected population size over 

a search area and time period. This is a parameter of consistent interest spanning disciplines, from 

criminology – in estimating the number of prostitutes or migrating fugitives (Rossmo and 

Routledge 1990), to ecology – in estimating the population size of many avian species (Royle 

2004). 

The performance of the new model is tested first by a Bayesian analogue of a power analysis of 

simulated data. We then demonstrate how this model can be expanded to deal with over-dispersed 

count data, and test such a model on a real-world dataset in which we infer breeding site locations 

of the mosquito Aedes aegypti, one of the primary transmitters of Zika virus across the globe 

(Hayes 2009, Hennessey et al. 2016). We investigate model behaviour when each search for 

bromeliad source locations given a) the DPM model using repeat point-pattern data of traps 

yielding mosquitoes and b) the negative binomial model using the full count data, including those 

with no encounters. The model excelled when making inferences based on simulated and real-

world data; search strategies based on count data shifted attention from those areas containing 

zeros, to those containing no information.  

Methods

A Poisson geographic profiling model

The Poisson model begins by assuming K sources, with locations μk = (μx, μy) for k in 1:K drawn 

from some suitable prior distribution, F. Here we follow (O’Leary 2010) in assuming that F is 

defined over a two-dimensional grid of cells, allowing the prior probability mass to be defined 

separately for each cell (for example, we often want zero probability over water bodies). Next, we 

assume there is some expectation, λt, on the number of events - both encountered and 

unencountered – in the study area, where λ is the expected number of events over the search area 

per unit time and t is the time interval with which data were collected. From this expectation we 

make a Poisson draw to obtain the total number of events, N, in the study area. Explicitly, an event 

is the existence of an invasive species, a host of a disease or a criminal in our search area.  A
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Each event originates from a single source with equal probability 1 / K, and the source from which 

event i originates can be written as ci in 1:K. The spatial location of event i, denoted xi, is drawn 

from a dispersal distribution centred on its source. Here we assume a bivariate Normal distribution 

with mean μci and variance σci
2, and zero correlation between dimensions. This is consistent with 

previous geographic profiling studies that recognise the probability of encountering an event is 

defined over 2D space as opposed to spatial capture recapture models that consider a univariate 

half-normal distribution between source and event (Efford 2004). 

Unlike the DPM model, we do not assume that every event is encountered. Instead we assume that 

there are m sentinel sites, denoted sj for j in 1:m, within the study area and that events are only 

encountered if they fall within a distance ρ from one of these sites. A sentinel site could take on 

many forms as shown in Table 1, biologically, these could refer to camera traps, hair snares or 

bioacoustics (Royle et al. 2018). In this study sentinel sites can encounter any non-negative integer 

of events akin to multi-catch traps in ecology (Borchers 2012), leading us to our count data. We 

make the model fully Bayesian by placing suitable priors on the remaining unknown quantities of 

interest. The complete model can be written:

Likelihood:

     ,𝑐𝑖~Categorical(1 𝐾) for ,𝑖 = 1:𝑁

     ,𝒙𝑖~Normal(𝝁𝑐𝑖,𝑰2𝜎2
𝑐𝑖) for ,𝑖 = 1:𝑁

     ,𝑛𝑗 = #{𝒙𝑖:𝑑𝐸(𝒙𝑖,𝒔𝑗) < 𝜌} for 𝑗 = 1:𝑚,

Priors:

     ,𝝁𝑐𝑖~𝐹 for ,𝑐𝑖 = 1:𝐾
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     ,𝜎𝑐𝑖~Log - Normal(𝛾,𝛿) for ,𝑐𝑖 = 1:𝐾

,     𝑁~Poisson(𝜆𝑡)

     𝜆~Gamma(𝜁,𝜂), (1)

where I2 is the two-dimensional identity matrix, and dE(xi, sj) the Euclidian distance between 

points xi and sj. When performing inference, we only have access to the final counts nj at each of 

the m sentinel sites, and not the raw data xi for i in 1:N. 

Now we need to calculate the probability of the observed nj given the parameters {μci}, {σci} and 

λt (the likelihood). The probability that an event is observed is equal to the probability that it falls 

within a distance ρ of a sentinel site, which can be obtained by integrating the dispersal 

distribution over the ball Bρ(sj) of radius ρ centred on sj. In general, this integral will not have a 

simple analytical solution, but under certain conditions we can approximate the volume of 

integration by a cylinder centred on sj with radius ρ and height equal to the dispersal distribution at 

the central point:

𝑃𝑟(𝑑𝐸(𝒙𝑖,𝒔𝑗) < 𝜌|𝝁,𝜎,𝑐𝑖) = ∬
𝐵𝜌(𝒔𝑗)

𝑓𝐵𝑁(𝑥,𝑦|𝝁𝑐𝑖,𝑰2𝜎2
𝑐𝑖)𝑑𝑥𝑑𝑦,

≈ 𝜋𝜌2𝑓𝐵𝑁(𝒔𝑗|𝝁𝑐𝑖,𝑰2𝜎2
𝑐𝑖), (2)

where fBN (sj | μci, I2σci
2) is the density of the bivariate normal distribution at sentinel site j with 

mean μci and covariance matrix I2σci
2. The validity of this approximation is explored in detail in 

Appendix S1. The total probability of being detected by sentinel site j can be obtained by 

averaging over all sources, leading to the following expression which we define as θj for 

convenience:

𝜃𝑗 ≡ 𝑃𝑟(𝑑𝐸(𝒙𝑖,𝒔𝑗) < 𝜌| {𝝁𝑐𝑖},{𝜎𝑐𝑖}) =
𝜋𝜌2

𝐾 ∑𝐾

𝑐𝑖 = 1
𝑓𝐵𝑁(𝒔𝑗|𝝁𝑐𝑖,𝑰2𝜎2

𝑐𝑖).
(3)
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Given a Poisson prior with rate λt is applied to the total number of events N and that every event 

has the same independent probability of being detected given by (3), it follows that the probability 

of detecting nj events at sentinel site j is independently Poisson distributed with rate λtθj. The 

likelihood is obtained by multiplying this Poisson probability over all sentinel sites:

𝑃𝑟(𝒏|𝜆𝑡,𝜽) = ∏𝑚

𝑗 = 1

(𝜆𝑡𝜃𝑗)𝑛𝑗𝑒 ―𝜆𝑡𝜃𝑗

𝑛𝑗!
,

(4)

Here we assume the unit of time is the interval in which the data were collected and thus set t 

equal to one. 

To account for potential over-dispersion in count data we can alter the likelihood in (4) as follows. 

We adopt a re-parametrized negative-binomial density and introduce a dispersion parameter α 

such that count nj is drawn from this density with mean λtθj and variance λtθj + α(λtθj)2
 (Lindén 

and Mäntyniemi 2011). Under a negative binomial model, the likelihood in (4) switches to 

Pr(𝒏|𝜆𝑡,𝜽, 𝑟) =
𝑚

∏
𝑗 = 1

Γ(𝑟 + 𝑛𝑗)
𝑛𝑗!Γ(𝑟) ( 𝑟

𝑟 +  𝜆𝑡𝜃𝑗)
𝑟( 𝜆𝑡𝜃𝑗

𝑟 +  𝜆𝑡𝜃𝑗)
𝑛𝑗

,
(5)

where r is equal to 1/α. A suitable prior for α is given by a log-normal distribution similarly to σci 

to ensure α is strictly positive. Finally, in addition to estimating an independent σci per source, it is 

possible to alter the expectation λtθj to estimate an independent expected number of events for 

each source, λci, where λ = Σ λci. The expected number of events at site j becomes

𝑡𝜃𝑗 = 𝑡𝜋𝜌2∑𝐾

𝑐𝑖 = 1
𝜆𝑐𝑖 ∙ 𝑓𝐵𝑁(𝒔𝑗|𝝁𝑐𝑖,𝑰2𝜎2

𝑐𝑖).#(6)

The likelihoods in (4) and (5) can then be altered accordingly to accommodate independent λci.

The Silverblaze package (Stevens and Verity 2021; see Data Availability) uses the likelihoods in 

(4) and (5) combined with the priors in (1) to estimate the unknown parameters {μci}, {σci} and 

{λci} (for ci in 1:K) in addition to α, under a negative binomial model, via MCMC methods using a 

combination of Metropolis-Hastings and Gibbs sampling. Details of the MCMC steps can be 

found in Appendix S2. A full list of model parameters can be found in Table 2. 
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Power analysis and model settings

We performed a Bayesian analogue of a traditional power analysis by simulating data from the 

Poisson model described in (1) and exploring the ability of the model to infer the true parameter 

values. For the validation of the Poisson model we explored the parameter space similarly to 

(Verity et al. 2014). 

Source locations were generated uniformly at random from a longitudinal and latitudinal extent of 

-0.2 to 0.0 and 51.45 to 51.55 respectively. The spatial prior F was defined over a 100x100 grid 

whose extent matched the same values as the source locations plus a 25% margin at each limit (-

0.25 to -0.05 and 51.425 to 51.575). This led to a spatial coverage of 345.53 km2. The number of 

sources K ranged from one to five, the true value of σci was set to 1.5 km and the number of events 

N was Poisson distributed with rates 100, 1000 and 10,000. For the power analysis, note that each 

source shared the same σci and λci (i.e. σ1 = σ2 … = σk and λ1 = λ2 … = λk). This was chosen for 

simplicity given the study focussed on the model’s ability to estimate source locations in place of 

independent dispersal and expected number of events. Finally, the number of sentinel sites was set 

to 25, 100 or 400 and they were distributed over space either uniformly at random or as a grid.

To determine the correct number of source locations, the Poisson model ran seven times, in each 

case searching from one up to seven sources to allow for cases where the model overestimates K. 

The most suitable value of K was then chosen via the deviance information criterion (DIC) 

(Spiegelhalter et al. 2014). The DIC is a metric for model comparison, used here to determine the 

best-fitting number of source locations. Parameter estimates for {μci}, {σci} and {λci} were then 

pulled for the value of K chosen by the DIC. These settings lead to 360 parameter combinations, 

each of which were repeated one hundred times and results were averaged.

The log-normal prior on the dispersal σci was set as either tight (standard deviation of one) or wide 

(standard deviation of 100). The gamma prior on λ was set such that the mean was equal to the 

true rates (100, 1000 or 10000) and the standard deviation was either the true rate or a tenth of the 

true rate.
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The burn-in and sampling period for the MCMC chains were set to 5*104 iterations. Convergence 

of the MCMC chains during burn-in were determined by Geweke’s metric for single MCMC 

chain convergence (Cowles and Carlin 1996). This was tested for at multiples of 1*104 iterations 

during burn-in. To ensure healthy MCMC mixing, the new model utilised a Metropolis-Hastings 

coupling step (see Appendix S2) (Atchadé et al. 2011). 

The success of a geographic profiling model is measured via a source’s hit score. This is defined 

as the area searched before finding a source divided by the total search area. Here our search 

strategy is defined by starting at the location with the highest value on the geographic profile and 

working downwards. To summarise each simulation’s hit scores we make use of the Gini 

coefficient, a metric developed in economics to describe the wealth distribution of a country 

across the population. In this context we used it to describe the proportion of source locations 

discovered over area searched, where a coefficient of one corresponded to a perfect search strategy 

and one half to a random search. Although we chose to represent the model’s ability through the 

Gini coefficient, we could have equivalently represented this using the AUC, a metric commonly 

used in ecology. The Gini coefficient is calculated by scaling the AUC and was chosen for a 

clearer scale of model success ranging from 0 to 1 compared to the AUC that measures from 0.5 to 

1 (Marcot 2012).    

 

Mosquito surveillance data

Trap surveillance data from (Wilke et al. 2019) of the mosquito Ae. aegypti in Miami-Dade 

County, Florida were used to test the negative binomial model’s ability to find breeding sites in 

ornamental bromeliads. Data consisted of 124 traps with encounters per trap ranging from 0-1033. 

A total of 94 traps contained Ae. aegypti and 30 did not. The average distance between an empty 

trap and its nearest positive trap was 55 metres with a standard deviation of 77 metres. There were 

51 ornamental bromeliad patches that were checked for immature stages of mosquitoes where 30 

contained Ae. aegypti larvae and 21 did not (Wilke et al. 2018). Here we considered trap data 

recorded during 2017 to match the time period bromeliad patches were surveyed.  

Model priors were set as follows. For source locations, the DPM model used a bivariate normal 

centred on the mean of the surveillance locations with standard deviation equal to the maximum 

distance between the data and mean (Verity et al. 2014). The final surface was then manipulated A
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post-hoc to exclude the possibility of source locations in the sea using a shape file (“South Florida 

Region Shapefile, Miami-Dade County - Open Data Hub” 2018, Faulkner et al. 2018). The 

negative binomial model used the same shape file for its prior on source locations where each 

cell’s probability mass is uniform on land and zero in the sea. For the dispersal parameter σci, a 

diffuse prior was set for the DPM (mean of 2.5 and standard deviation of 10). The same 

hyperparameters were used for the negative binomial’s prior on σci in addition to a tight prior 

(standard deviation of 1) to explore model behaviour under different priors. These priors conform 

to previous studies placing ae. Aegypti dispersal somewhere between 0 and 5 km (Service and 

Place 1997, Gorrochotegui-Escalante et al. 2000). For the negative binomial model, tight and 

diffuse log-normal priors were set for the expected number of events λ (means of 1*106 and 

standard deviations of 1*105 and 1*106). The prior on α was also log-normal with mean 1 and 

standard deviation 100.

To estimate the number of sources K, the negative binomial model was run 25 times, in each case 

searching for that specific number of sources, where the DIC was again utilized to pick the most 

suitable value of K to explain the data (Spiegelhalter et al. 2014). The DPM model used five 

sampling chains, each with a burn-in period of 5*102 iterations and a sampling period of 1*104 

iterations. The negative binomial model ran for 5*104 burn-in and sampling iterations with 

convergence checked at each multiple of 1*104 iterations during burn-in (Cowles and Carlin 

1996).

Software and data

The DPM, Poisson and negative binomial models were developed in R and C++ and implemented 

in the Rgeoprofile (Verity and Le Comber 2021) and Silverblaze (Stevens and Verity 2021; see 

Data Availability) packages. In both cases, extensive documentation is available for installation 

and implementation. Furthermore, the R scripts used to run the analyses described in this 

manuscript in addition to the mosquito trap-surveillance data and bromeliad breeding sites are 

available in Data S1. 

Results

Gini coefficientsA
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The results of the Bayesian power analysis can be seen in Table 3. There was a consistent decrease 

in power as we increased the number of sources but an increase in power given more sampling 

locations. Of the 360 parameter combinations, 278 (77%) reached a Gini coefficient of 0.9 or 

higher. Table 3 also shows that a uniform site configuration yielded a higher Gini coefficient more 

often than a random layout (134 of 180 cases). Additionally, tight priors on σci and λ in place of 

wide priors yielded higher Gini coefficients in 94 and 116 of 180 cases respectively. 

Parameter estimation 

The new model was also tested on its ability to return the true number of source locations K, the 

true dispersal σci and finally, the expected number of events λ. The new model correctly fitted the 

true value of K in 57% of cases, it fitted within 1 of the true value in 76% of cases and within 2 in 

88%. 

The true σci value was set to 1.5 km. The model’s average estimate for σci was 1.68 km (standard 

deviation of 0.94). The prior on σci, the prior on λ, the expected number of events λ, sampling 

strategy, number of sources and number of sentinel sites all significantly affected the fitted value 

(ANOVA: σci prior: F1,35640 = 229.10, p < 2e-16; λ prior: F1,35640 = 7.20, p = 0.01; expected events: 

F2,35640 = 2841.77, p < 2e-16; sampling strategy: F1,35640 = 224.98, p < 2e-16; sources: F4,35640 = 

394.54, p < 2e-16; sentinel sites: F2,35640 = 735.24, p < 2e-16). Of all the interactions, the true 

expected number of events remained the strongest variable that affected the fitted value of σci. 

True λ values were set to 100, 1000 and 10000. The model’s average estimates for λ were 118, 

1094 and 10501 (with standard deviations of 34, 274 and 1856 respectively). Of the same list of 

variables, all significantly affected the fitted value for the expected number of events, with the 

exception of the number of sentinel sites (ANOVA: σci prior: F1,35640 = 332.40, p < 2e-16; λ prior: 

F1,35640 = 1105.00, p < 2e-16; expected events: F2,35640 = 4.092e+5, p < 2e-16; sampling strategy: 

F1,35640 = 98.27, p < 2e-16; sources: F4,35640 = 18.72, p = 2e-15; sentinel sites: F2,35640 = 268.70, p < 

2e-16). In the case of interactions, the strongest variable that affected the fitted expected number 

of events was the true expected number of events.

Mosquito surveillance dataA
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The mosquito surveillance data and bromeliad patches can be seen alongside the geographic 

profiles created by the negative binomial and DPM models in Fig 1a and Fig 1b. The DPM model 

determined 91 clusters best described the data. Within the negative binomial model, the DIC 

determined varying cluster numbers (between 2 and 18) dependent on the choice of parameter 

priors (Fig 2). Hit score percentages for the DPM model ranged from 0.13% to 41.64% with an 

average of 11.12%. The negative binomial model’s hit scores percentages ranged from 1.95% to 

69.00% with an average of 21.27%. Under informative priors the negative binomial model 

returned a dispersal σci value between 1.41 and 7.03 km (95% credible interval) whereas under 

less informative priors estimates reached up to 22 km. Comparatively, the DPM model estimated 

σci between 9 and 10 metres. The total expected population density of Ae. aegypti was estimated 

between 3.64 to 28.28 million for 2017. The over-dispersion parameter α was consistently 

estimated between 2.40 and 4.35. 

Discussion

In this paper we have constructed and validated a new geographic profiling model that can 

distinguish between an absence of evidence and evidence of absence. This was done by taking as 

input count data into the model’s likelihood of which can consist of locations associated with no 

encounters. 

Accounting for different information can lead to different search strategies. Sentinel sites with no 

encounters drew us away from common search practices such as looking near the spatial mean of 

observed data, a method that is only effective when searching for a single source location 

(Stevenson et al. 2012, Verity et al. 2014). In addition, this new information drew search priority 

away from those areas containing no encounters to those with no information at all, compared to 

the DPM model, where these areas were treated equally. An assumption when using the DPM 

model is that perfect observations are made, meaning all events that occur will be seen. This 

assumption is valid in studies where the exact locations of events are recorded (Faulkner et al. 

2015, Smith et al. 2015, Struebig et al. 2018) but is less suitable in those that adopt a sampling 

strategy using sentinel sites (Faulkner et al. 2016). 

We have shown via a power analysis and real-world case study that the new model can estimate a 

variety of parameters common to geographic profiling in addition to new ones. It accurately A
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estimated source locations, dispersal σci and the number of source locations, K, in addition to the 

newly fitted expected number of events, λ, and over-dispersion parameter, α. Finally, it allows for 

cases where σci, and λ vary from source to source.

The new model was able to identify source locations efficiently, as was reflected in consistently 

high Gini coefficients across parameter combinations. Average Gini coefficients never fell below 

0.5, the value associated with a random search strategy. 

Estimating the number of sources in the new model was less straightforward than in the DPM 

model. A major strength of the latter is that it did not require us to specify the number of source 

locations in advance. In the new model, we ran the algorithm many times and used the deviance 

information criterion (DIC) to find the most appropriate number of source locations. This process 

produced accurate results for simulated data but was shown to produce different results dependent 

on prior choice in the real-world case study. Here, combinations of diffuse and informative priors 

indicated suitable K values at 2, 14 or 18 (Fig 2). Although a K value of 2 corresponded to the best 

DIC value, estimates of σci in this case were up to 22 km. For a K value of 14, estimates were 

much more sensible. The DPM model estimated σci between nine and ten metres.  In both cases, 

each model’s estimate for σci contradicted our prior beliefs built from our biological understanding 

of Ae. Aegypti dispersal. We therefore suggest careful consideration be taken when building priors 

and advice from field experts and collaborators is sought. 

It would be naïve to assume the number of sources fitted by either models or the known number of 

breeding sites reflects the true number of sources, of which could consist of any body of stagnant 

water (Ramasamy et al. 2011). Given the ground truth about the true number of sources is 

unknown, there is no way of evaluating the hit scores of these hypothetical locations. We therefore 

suggest that the number of source locations fitted by either model play the role of a lower bound 

on the true value of K. We also suggest future work could focus on migrating the new model to a 

non-parametric framework, similarly to the DPM model, in place of estimating K by running the 

model multiple times. 
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In this new model we derived an expectation for the number of events at each sentinel site. This 

was dependent on the: site radius ρ, expected number of events in our search area λ, time the 

sentinel is left open (susceptible to events) and the site’s spatial location with respect to sources. 

The sentinel site radius ρ was kept constant throughout our analyses to ensure the approximation 

in (2) was not erroneous (see Appendix S1). In our model an event was encountered by a single 

sentinel site only. This was based upon whether an event fell within a site’s radius. Should an 

event be encountered by two sites, then we must have observed it at two distinct points in time. 

The effect of the site radius is like that of time; the larger the radius the more events expected at 

each site.  Here, the effect of time was not explored, rather its units were set to the time interval in 

which data were collected. As suggested in many studies (Rossmo 2000, Raine et al. 2009, 

Santosuosso and Papini 2018), a more accurate geographic profiling model is one that considers 

temporal variability in the data to draw its inferences. 

A sentinel site that encounters at least one event is indicative of the presence of, for example, an 

invasive species. The opposite however is not necessarily true for a site that encounters nothing. If 

a sentinel site yields no encounters, then either an event is not present in that area or, it is, but the 

sentinel site failed to observe it. In this study if an event fell within a sentinel site’s radius then it 

was immediately encountered by that site. Detection probabilities are not always one and future 

studies may investigate relaxing this condition. Furthermore, we could adapt the observation 

model so that encounters are not governed by a site radius, such as in (Chandler and Royle 2013). 

Collecting count data is common in ecology, for example in spatially explicit capture-recapture 

models and site occupancy models (MacKenzie et al. 2002, Kéry et al. 2011, Royle et al. 2011, 

Chandler and Royle 2013). The primary purpose of these models is to estimate abundance, rather 

than, as here, the location of sources. Spatially explicit capture-recapture models do treat these 

source locations (known as “activity centres”) as a latent variable but make differing assumptions 

about their numbers. Instead of assuming each encountered event is associated with a unique 

source, geographic profiling aims to partition the count data into clusters and finds the source 

location associated with each cluster. The aim of this study was to build a model that estimated 

source locations using count data, so the architecture of the new model was built from the point of A
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view of historical geographic profiling models that consistently focus on estimating this 

parameter. 

In addition to count data, it is entirely possible for the new model to utilise pseudo-absences in its 

inference process (Barbet-Massin et al. 2012). By replacing unsampled locations with pseudo-

absences we would expect the model to focus search priority entirely on locations with positive 

data. However, this could be accomplished by a suitably informed Bayesian prior on source 

locations, such as the Miami-Dade coastline shapefile that was used to ignore locations in the sea. 

Comparing the utility between a Bayesian prior and a set of pseudo-absences both derived from 

habitat suitability was not tested here but could be explored in future work. Geographic 

heterogeneities have been considered in previous geographic profiling models such as (Mohler 

and Short 2012). This is however, the first time we see such information accounted for in a 

geographic profiling model that can also estimate multiple numbers of sources. 

Conclusions 

Our analyses and results have shown that a geographic profiling model that utilises count data can 

alter search strategies when intervening in cases of species invasion, outbreak of infection or crime 

by making the distinction between evidence of absences in data and an absence of evidence.  In 

doing so, search strategies produced move priority away from those locations containing absences 

to those containing no information at all; a substantial change over existing models that treat these 

areas with equal search priority. Additionally, the new model introduces the ability to estimate 

spatial dispersal and expected population size unique to each source location as well as the 

flexibility to a user to implement any spatial prior desired. Different models should be used in 

differing circumstances dependent on the type of data to hand. The DPM model should be used 

when data are in point-pattern form (each location is associated with a single instance of crime, an 

invasive species or disease) and the new model should be chosen when we have a list of sentinel 

site locations and associated counts (bioacoustics monitors, camera or pitfall traps). 
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Tables

Table 1: Terminology used in geographic profiling and species distribution models alongside joint 

terms adopted in this study.

Discipline Examples Event Encounter No 

encounter

Source 

location

Sentinel 

site

Faulkner et 

al. 2016

Invasive

species

Capture Empty 

trap

Nesting 

location

TrapEcology

Chandler and 

Royle 2013

Animal Observed 

individual

Nothing 

observed

Activity 

centre

Trap: 

single, 

multi-

level, 

proximity

Epidemiology Verity et al. 

2014

Disease host Positive test 

result

Negative 

test result

Source of 

outbreak

Patient 

postcode

Criminology Rossmo et 

al. 2014

Criminal Crime No crime Anchor 

point

Potential 

crime site
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Table 2: Parameters adopted in the methods sections.

Parameter Definition

K The true number of source locations

μci The spatial location of source ci in 1 to K

F The prior on source locations

N The number of events in a search area 

λt The rate of events in a search area in time t

(ζ, η) The shape and rate of the gamma prior on λ

xci The spatial location of event i, originating from source ci

σci (km) The bivariate normal’s standard deviation centred on μci 

(γ, δ) The mean and variance of the lognormal prior on σci

m The number of sentinel sites

ρ (km) The sentinel site radius

sj The spatial location of sentinel site j

nj The number of events encountered at sentinel site j 

θj The height of sentinel site j on the mixture of normal

Bρ(sj) The ball of radius ρ centred on sentinel site sj

fBN The density of the bivariate normal

α The over dispersion parameter governing count variance
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Table 3: Results of the Poisson-model power analysis reported as mean Gini coefficient across replicates.

Source 1 Source 2 Source 3 Source 4 Source 5

Tight λ prior Wide λ prior Tight λ prior Wide λ prior Tight λ prior Wide λ prior Tigh λ prior t Wide λ prior Tight λ prior Wide λ prior

Site 

configuratio

n and event 

rate (λ)

No. 

site

s

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Wid

e σci 

prior

Tigh

t σci 

prior

Uniform

Event rate

100 25 0.99

4

0.99

2

0.99

2

0.99

3

0.89

2

0.87

4

0.86

3

0.87

7

0.79

8

0.75

1

0.77

1

0.76

9

0.74

0

0.72

1

0.68

3

0.69

0

0.67

3

0.66

2

0.65

5

0.61

8

100 0.99

7

0.99

6

0.99

6

0.99

5

0.94

8

0.95

1

0.94

3

0.94

1

0.87

8

0.87

5

0.83

8

0.81

8

0.78

9

0.79

1

0.76

3

0.72

9

0.73

0

0.68

4

0.71

2

0.68

3

400 0.99

9

0.99

9

0.99

9

0.99

9

0.99

3

0.99

2

0.98

8

0.98

6

0.97

0

0.96

9

0.95

5

0.94

9

0.93

1

0.92

5

0.89

9

0.90

3

0.87

6

0.86

5

0.85

7

0.81

6

1000 25 0.99

8

0.99

8

0.99

8

0.99

8

0.98

5

0.98

2

0.98

1

0.98

0

0.94

3

0.92

9

0.92

9

0.93

6

0.87

2

0.86

6

0.87

4

0.87

6

0.82

3

0.79

5

0.81

4

0.79

5

100 0.99

9

0.99

9

0.99

9

0.99

9

0.99

6

0.99

7

0.99

6

0.99

6

0.98

9

0.98

8

0.98

2

0.98

4

0.97

3

0.97

1

0.96

8

0.95

4

0.94

6

0.93

5

0.93

4

0.91

8

400 0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

7

0.99

7

0.99

6

0.99

6

0.99

3

0.99

3

0.99

2

0.99

2

0.98

6

0.98

8

0.98

0

0.98

3

10,000 25 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.96 0.96 0.95 0.95
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9 9 9 9 8 8 7 6 5 3 4 9 5 5 4 7 9 3 4 5

100 0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

8

0.99

8

0.99

7

0.99

8

0.99

7

0.99

6

0.99

5

0.99

6

0.99

3

0.99

4

400 0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

9

0.99

8

0.99

8

0.99

8

0.99

8

Random

Event rate

100 25 0.99
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Figure legends

Figure 1: The geographic profiles in Miami-Dade County Florida, created by a) the negative 

binomial model via the 2017 mosquito count data under informative priors (K = 14) and b) the 

DPM model via repeat point-pattern data (K = 91). Locations of bromeliad breeding sites are 

marked with a cross (Wilke et al. 2018, 2019). Given the proximity between positive and empty 

traps, some positive traps are only visible in Fig 1b.

Figure 2: The deviance information criterion for each negative binomial model searching for K 

source locations under different priors. The most suitable number of source locations based on 

prior combination are marked with a diamond. Full DIC values are displayed in the top panel with 

a zoomed version on the bottom.
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