7,745 research outputs found

    Spectral Changes in the Hyperluminous Pulsar in NGC 5907 as a Function of Super-Orbital Phase

    Get PDF
    We present broad-band, multi-epoch X-ray spectroscopy of the pulsating ultra-luminous X-ray source (ULX) in NGC 5907. Simultaneous XMM-Newton and NuSTAR data from 2014 are best described by a multi-color black-body model with a temperature gradient as a function of accretion disk radius significantly flatter than expected for a standard thin accretion disk (T(r) ~ r^{-p}, with p=0.608^{+0.014}_{-0.012}). Additionally, we detect a hard power-law tail at energies above 10 keV, which we interpret as being due to Comptonization. We compare this observation to archival XMM-Newton, Chandra, and NuSTAR data from 2003, 2012, and 2013, and investigate possible spectral changes as a function of phase over the 78d super-orbital period of this source. We find that observations taken around phases 0.3-0.4 show very similar temperature profiles, even though the observed flux varies significantly, while one observation taken around phase 0 has a significantly steeper profile. We discuss these findings in light of the recent discovery that the compact object is a neutron star and show that precession of the accretion disk or the neutron star can self-consistently explain most observed phenomena.Comment: 7 pages, 5 figures, submitted to ApJ; comments welcom

    Effect of Static Disorder in an Electron Fabry-Perot Interferometer with Two Quantum Scattering Centers

    Full text link
    In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8}, 214 (2006) -- we have demonstrated that the electron transmission properties of a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can be significantly affected by entanglement between the spins of the scattering centers. Such effect is of particular interest in the control of transmission of quantum information in nanostructures and can be used as a detection scheme of maximally entangled states of two localized spins. In this letter, we relax the constraint that the two magnetic impurities are equal and investigate how the main results presented in the above paper are affected by a static disorder in the exchange coupling constants of the impurities. Good robustness against deviation from impurity symmetry is found for both the entanglement dependent transmission and the maximally entangled states generation scheme.Comment: 4 pages, 5 figure

    Interaction Effects in Conductivity of Si Inversion Layers at Intermediate Temperatures

    Full text link
    We compare the temperature dependence of resistivity \rho(T) of Si MOSFETs with the recent theory by Zala et al. This comparison does not involve any fitting parameters: the effective mass m* and g*-factor for mobile electrons have been found independently. An anomalous increase of \rho with temperature, which has been considered a signature of the "metallic" state, can be described quantitatively by the interaction effects in the ballistic regime. The in-plane magnetoresistance \rho(B) is qualitatively consistent with the theory; however, the lack of quantitative agreement indicates that the magnetoresistance is more susceptible to the sample-specific effects than \rho(T).Comment: 4 pages, 5 figures. References update

    Characteristic Potentials for Mesoscopic Rings Threaded by an Aharonov-Bohm Flux

    Full text link
    Electro-static potentials for samples with the topology of a ring and penetrated by an Aharonov-Bohm flux are discussed. The sensitivity of the electron-density distribution to small variations in the flux generates an effective electro-static potential which is itself a periodic function of flux. We investigate a simple model in which the flux sensitive potential leads to a persistent current which is enhanced compared to that of a loop of non-interacting electrons. For sample geometries with contacts the sensitivity of the electro-static potential to flux leads to a flux-induced capacitance. This capacitance gives the variation in charge due to an increment in flux. The flux-induced capacitance is contrasted with the electro-chemical capacitance which gives the variation in charge due to an increment in an electro-chemical potential. The discussion is formulated in terms of characteristic functions which give the variation of the electro-static potential in the interior of the conductor due to an increment in the external control parameters (flux, electro-chemical potentials). Paper submitted to the 16th Nordic Semiconductor Meeting, Laugarvatan, Iceland, June 12-15, 1994. The proceedings will be published in Physica Scripta.Comment: 23 pages + 4 figures, revtex, IBM-RC1955

    Topologically protected quantum gates for computation with non-Abelian anyons in the Pfaffian quantum Hall state

    Full text link
    We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma et al., in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected Controlled-NOT gate which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the pi/8 gate, are also explicitly implemented by quasihole braidings. Instead of the pi/8 gate we try to construct a topologically protected Toffoli gate, in terms of the Controlled-phase gate and CNOT or by a braid-group based Controlled-Controlled-Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g_3.Comment: 6 pages, 7 figures, RevTeX; version 3: introduced section names, new reference added; new comment added about the embedding of the one- and two- qubit gates into a three-qubit syste

    Possible Metal/Insulator Transition at B=0 in Two Dimensions

    Full text link
    We have studied the zero magnetic field resistivity of unique high- mobility two-dimensional electron system in silicon. At very low electron density (but higher than some sample-dependent critical value, ncr∌1011n_{cr}\sim 10^{11} cm−2^{-2}), CONVENTIONAL WEAK LOCALIZATION IS OVERPOWERED BY A SHARP DROP OF RESISTIVITY BY AN ORDER OF MAGNITUDE with decreasing temperature below 1--2 K. No further evidence for electron localization is seen down to at least 20 mK. For ns<Ncrn_s<N_{cr}, the sample is insulating. The resistivity is empirically found to SCALE WITH TEMPERATURE BOTH BELOW AND ABOVE ncrn_{cr} WITH A SINGLE PARAMETER which approaches zero at ns=ncrn_s=n_{cr} suggesting a metal/ insulator phase transition.Comment: 10 pages; REVTeX v3.0; 3 POSTSCRIPT figures available upon request; to be published in PRB, Rapid Commu

    Charged impurity scattering limited low temperature resistivity of low density silicon inversion layers

    Full text link
    We calculate within the Boltzmann equation approach the charged impurity scattering limited low temperature electronic resistivity of low density nn-type inversion layers in Si MOSFET structures. We find a rather sharp quantum to classical crossover in the transport behavior in the 0−50 - 5K temperature range, with the low density, low temperature mobility showing a strikingly strong non-monotonic temperature dependence, which may qualitatively explain the recently observed anomalously strong temperature dependent resistivity in low-density, high-mobility MOSFETs.Comment: 5 pages, 2 figures, will appear in PRL (12 July, 1999

    Influence of retardation effects on 2D magnetoplasmon spectrum

    Full text link
    Within dissipationless limit the magnetic field dependence of magnetoplasmon spectrum for unbounded 2DEG system found to intersect the cyclotron resonance line, and, then approaches the frequency given by light dispersion relation. Recent experiments done for macroscopic disc-shape 2DEG systems confirm theory expectations.Comment: 2 pages,2 figure
    • 

    corecore