238 research outputs found

    Sports review: A content analysis of the International Review for the Sociology of Sport, the Journal of Sport and Social Issues and the Sociology of Sport Journal across 25 years

    Get PDF
    The International Review for the Sociology of Sport, the Journal of Sport and Social Issues and Sociology of Sport Journal have individually and collectively been subject to a systematic content analysis. By focusing on substantive research papers published in these three journals over a 25-year time period it is possible to identify the topics that have featured within the sociology of sport. The purpose of the study was to identify the dominant themes, sports, countries, methodological frameworks and theoretical perspectives that have appeared in the research papers published in these three journals. Using the terms, identified by the author(s), that appear in the paper’s title, abstract and/or listed as a key word, subject term or geographical term, a baseline is established to reflect on the development of the sub-discipline as represented by the content of these three journals. It is suggested that the findings illustrate what many of the more experienced practitioners in the field may have felt subjectively. On the basis of this systematic, empirical study it is now possible to identify those areas have received extensive coverage and those which are under-researched within the sociology of sport. The findings are used to inform a discussion of the role of academic journals and the recent contributions made by Michael Silk, David Andrews, Michael Atkinson and Dominic Malcolm on the past, present and future of the ‘sociology of sport’

    Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish

    Get PDF
    AbstractB1-type SOXs (SOXs 1, 2, and 3) are the most evolutionarily conserved subgroup of the SOX transcription factor family. To study their maternal functions, we used the affinity-purified antibody antiSOX3c, which inhibits the binding of Xenopus SOX3 to target DNA sequences [Development. 130(2003)5609]. The antibody also cross-reacts with zebrafish embryos. When injected into fertilized Xenopus or zebrafish eggs, antiSOX3c caused a profound gastrulation defect; this defect could be rescued by the injection of RNA encoding SOX3ΔC-EnR, a SOX3-engrailed repression domain chimera. In antiSOX3c-injected Xenopus embryos, normal animal–vegetal patterning of mesodermal and endodermal markers was disrupted, expression domains were shifted toward the animal pole, and the levels of the endodermal markers SOX17 and endodermin increased. In Xenopus, SOX3 acts as a negative regulator of Xnr5, which encodes a nodal-related TGFβ-family protein. Two nodal-related proteins are expressed in the early zebrafish embryo, squint and cyclops; antiSOX3c-injection leads to an increase in the level of cyclops expression. In both Xenopus and zebrafish, the antiSOX3c phenotype was rescued by the injection of RNA encoding the nodal inhibitor Cerberus-short (CerS). In Xenopus, antiSOX3c's effects on endodermin expression were suppressed by injection of RNA encoding a dominant negative version of Mixer or a morpholino against SOX17α2, both of which act downstream of nodal signaling in the endoderm specification pathway. Based on these data, it appears that maternal B1-type SOX functions together with the VegT/β-catenin system to regulate nodal expression and to establish the normal pattern of germ layer formation in Xenopus. A mechanistically conserved system appears to act in a similar manner in the zebrafish

    Microbial Niche Diversification in the Galápagos Archipelago and Its Response to El Niño

    Get PDF
    The Galápagos Archipelago is located at the intersection of several major oceanographic features that produce diverse environmental conditions around the islands, and thus has the potential to serve as a natural laboratory for discerning the underlying environmental factors that structure marine microbial communities. Here we used quantitative metagenomics to characterize microbial communities in relation to archipelago marine habitats, and how those populations shift due to substantial environmental changes brought on by El Niño. Environmental conditions such as temperature, salinity, inorganic dissolved nutrients, and dissolved organic carbon (DOC) concentrations varied throughout the archipelago, revealing a diversity of potential microbial niches arising from upwelling, oligotrophic to eutrophic gradients, physical isolation, and potential island mass effects. The volumetric abundances of microbial community members shifted with these environmental changes and revealed several taxonomic indicators of different water masses. This included a transition from a Synechococcus dominated system in the west to an even mix of Synechococcus and Prochlorococcus in the east, mirroring the archipelago’s mesotrophic to oligotrophic and productivity gradients. Several flavobacteria groups displayed characteristic habitat distributions, including enrichment of Polaribacter and Tenacibaculum clades in the relatively nutrient rich western waters, Leeuwenhoekiella spp. that were enriched in the more nutrient-deplete central and eastern sites, and the streamlined MS024-2A group found to be abundant across all sites. During the 2015/16 El Niño event, both environmental conditions and microbial community composition were substantially altered, primarily on the western side of the archipelago due to the reduction of upwelling from the Equatorial Undercurrent. When the upwelling resumed, concentrations of inorganic nutrients and DOC at the western surface sites were more typical of mesopelagic depths. Correspondingly, Synechococcus abundances decreased by an order of magnitude, while groups associated with deeper water masses were enriched, including streamlined roseobacters HTCC2255 and HIMB11, Thioglobacaceae, methylotrophs (Methylophilaceae), archaea (Nitrosopumilaceae), and distinct subpopulations of Pelagibaceriales (SAR11 clade). These results provide a quantitative framework to connect community-wide microbial volumetric abundances to their environmental drivers, and thus incorporation into biogeochemical and ecological models

    The Notochord, Notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation

    Get PDF
    The growth regulating factor CTGF/CCN-2 is an integral factor in growth and development, connective tissue maintenance, wound repair and cell cycle regulation. It has recently been reported that CTGF/CCN-2 is involved in very early development having been detected in early notochord formation in zebrafish using CTGF/CCN-2 promoter-driven green fluorescent protein (GFP) plasmids. In these studies fluorescence was detected early in the developing embryos, a finding of considerable significance in that CTGF/CCN-2 deficient mutant mice die early after birth due to severe cartilage and skeletal dysplasia and respiratory failure. Such findings confirm the importance of CTGF/CCN-2 in development and of the necessary and sufficient role of this molecule in formation of the skeleton, extracellular matrix and chondrogenesis. Of particular relevance to the relationship between the notochordal cell and CTGF/CCN-2 there is a remarkable sub-species of canine, the ‘non-chondrodystrophic’ canine that is protected from developing degenerative disc disease (DDD). These animals are unique in that they preserve the population of notochordal cells within their disc nucleus (NP) and these cells secrete CTGF/CCN-2. We have detected CTGF/CCN-2 within conditioned medium developed from the notochordal cells of these animals (NCCM) and used this conditioned medium to demonstrate robustly increased proteoglycan production. The addition of recombinant human CTGF/CCN-2 to totally serum-free media containing cultures of bovine NP cells replicated the robustly increased aggrecan gene expression found with NCCM alone strongly suggesting the importance of the effect of CTGF/CCN-2 in notochordal cell biology within the disc nucleus of non-chondrodystrophic canines. The chondrodystrophic canine, another sub-species on the other hand are almost totally devoid of notochordal cells and they develop DDD profoundly and early. These two sub-species of canine reflect a naturally occurring animal model that is an excellent example of differential notochordal cell survival and possible associated developmental differences in extracellular maintenance

    Iron storage capacities and associated ferritin gene expression among marine diatoms

    Get PDF
    In large regions of the ocean, low iron availability regulates diatom growth and species composition. Diatom species often vary in their physiological response to iron enrichment, with natural and artificial iron additions in iron-limited regions of the ocean resulting in large blooms of primarily pennate diatoms. The ability of pennate diatoms to proliferate following pulse iron additions has been partly attributed to their ability to acquire and store excess intracellular iron in the iron storage protein ferritin. Recent transcriptome sequencing of diatoms indicate that some centric diatoms also possess ferritin. Using a combination of physiological and molecular techniques, we examined the iron storage capacities and associated ferritin gene expression in phylogenetically diverse centric and pennate diatoms grown under high and low iron concentrations. There were no systematic differences among ferritin-containing and non-containing diatom lineages in their ability to store iron in excess of that needed to support maximum growth rates. An exception, however, was the ferritin-containing pennate diatom Pseudo-nitzschia granii, native to iron-limited waters of the Northeast Pacific Ocean. This species exhibited an exceptionally large luxury iron storage capacity and increased ferritin gene expression at high iron concentrations, supporting a role in long-term iron storage. By contrast, two other diatoms species that exhibited minimal iron storage capacities contained two distinct ferritin genes where one ferritin gene increased in expression under iron limitation while the second showed no variation with cellular iron status. We conclude that ferritin may serve multiple functional roles that are independent of diatom phylogeny

    Representations of sport in the revolutionary socialist press in Britain, 1988–2012

    Get PDF
    This paper considers how sport presents a dualism to those on the far left of the political spectrum. A long-standing, passionate debate has existed on the contradictory role played by sport, polarised between those who reject it as a bourgeois capitalist plague and those who argue for its reclamation and reformation. A case study is offered of a political party that has consistently used revolutionary Marxism as the basis for its activity and how this party, the largest in Britain, addresses sport in its publications. The study draws on empirical data to illustrate this debate by reporting findings from three socialist publications. When sport did feature it was often in relation to high profile sporting events with a critical tone adopted and typically focused on issues of commodification, exploitation and alienation of athletes and supporters. However, readers’ letters, printed in the same publications, revealed how this interpretation was not universally accepted, thus illustrating the contradictory nature of sport for those on the far left

    Update On The Zebrafish Genome Project

    Get PDF
    The zebrafish genome, which consists of 25 linkage groups and is ~1.4Gb in size, is being sequenced, finished and analysed in its entirety at the Wellcome Trust Sanger Institute. The manual annotation is provided by the Human and Vertebrate Analysis and Annotation (HAVANA) group and is released at regular intervals onto the Vertebrate Genome Annotation (Vega) database ("http://vega.sanger.ac.uk":http://vega.sanger.ac.uk) and may be viewed as a DAS source in Ensembl ("http://www.ensembl.org/Danio_rerio":http://www.ensembl.org/Danio_rerio). 

Our annotation is compiled in close collaboration with the Zebrafish Information Network (ZFIN) ("http://zfin.org/":http://zfin.org/), which has enabled us to provide an accurate, dynamic and distinct resource for the zebrafish community as a whole.

Annotation is based on the reference genome sequence, which is derived from a minimal tile path assembly composed of clones that have been mapped, sequenced and meticulously finished to a sequence accuracy of over 99.9% per 100Kb. We expect to have 90% of the zebrafish genome to a finished standard by the end of 2009. Our approach to annotation uses two strategies. Firstly, the generation and annotation of gene lists comprising of cDNA (8995 in total) found in ZFIN that maps to our current reference assembly. And, secondly, by using clone by clone annotation, where we have annotated over 3200 genes, 1100 transcripts and 130 pseudogenes across 11 linkage groups and 3530 clones. As well as our on-going genome annotation we also welcome external annotation requests for specific genes and regions, which already include the annotation of 93 genes associated with human obesity and the scheduled annotation of the Major Histocompatability Complex, which will utilise reference sequence taken from libraries of a double haploid fish and complement our previous work on the human and mouse MHC already published.
 
External requests and any feedback, questions or requests can be sent to zfish-help [at] sanger.ac.uk

    NASA's Robotic Lunar Lander Development Program

    Get PDF
    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed

    Critical Early Roles for col27a1a and col27a1b in Zebrafish Notochord Morphogenesis, Vertebral Mineralization and Post-embryonic Axial Growth

    Get PDF
    Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development.We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically.Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore