227 research outputs found

    Chemical ecology of egg parasitoids associated with true bugs

    Get PDF
    Parasitoids representing some 15 families of Hymenoptera develop in insect eggs; three of these families, Platygastridae (= Scelionidae), Mymaridae, and Encyrtidae, are associated with Heteroptera. Several species of heteropteran egg parasitoids are or may be important for biological pest control. Successful parasitism of insect herbivores by insect parasitoids arises through several phases of host searching, which lead female wasps to the vicinity of, or in contact with, their hosts. During the host location process, females encounter and explore a variety of stimuli, among which chemical cues (i.e., semiochemicals or infochemicals) play a pivotal role. Female parasitoids are under selection pressure to efficiently invest their limited time on the location and exploitation of host-derived stimuli. In general, the levels of reliability and detectability of a particular stimulus are inversely correlated. Female parasitic wasps adopt differing strategies to solve this dilemma. In this paper we focus on the various host selection strategies employed by heteropteran egg parasitoids and possible means whereby the chemically mediated behavior of these wasps may be exploited to enhance biological pest control

    Chemical ecology of insect parasitoids: towards a new era

    Get PDF
    Over the course of evolutionary time, insect parasitoids have developed diverse strategies for using chemical compounds to communicate with various protagonists within their environment (i.e. conspecifi cs, their hosts, and the plants on which their hosts are living). Unravelling the evolutionary meaning of such chemical communication networks not only provides new insights into the ecology of these insects but also contributes to improving the use of parasitoids for the control of insect pests in biological control programmes. A book covering our current knowledge of the chemical ecology of insect parasitoids is therefore particularly timely and will appeal to a large number of potential readers worldwide, from university students to senior scientists. Internationally recognized specialists were invited to contribute chapters to this book, examining the main topics and exploring the most interesting issues in the fi eld of chemical ecology of insect parasitoids. The chapters are organized so as to present the most signifi cant knowledge and discoveries made over recent decades, and their potential uses in pest control

    Factors influencing brood sex ratio in the egg parasitoid Trissolcus basalis (Woll.) (Hymenoptera: Scelionidae)

    Get PDF
    This study examines the sex ratio response of the egg parasitoid Trissolcus basalis (Woll.) to both the presence of other conspecific females and to their traces when ovipositing on Nezara viridula (L.) egg masses. In both conditions T basalis females lay a higher sex ratio (proportion of males) qualitatively agreeing with the local mate competition (LMC) theory. The ability of T basalis to shift its sex ratio could be achieved by decreasing the number of laid eggs per wasp, which would increase the proportion of male eggs due to the sequence effect, i.e. "male-first strategy", and by direct oviposition of a higher proportion of male eggs. In ali likelihood the extemal marking pheromone left by previous females provides the stimulus for sex ratio adjustment to the following females. Key words: arrhenotoky, local mate competition, Nezara viridula, egg mass.I FATTORI CHE INFLUENZANO LA SEX RATIO DELLA PROGENIE DEL PARASSITOIDE OOFAGO TRISSOLCUS BASALIS (WOLL.) (HYMENOPTERA: SCELIONIDAE) In questo studio sono state esaminate le variazione nella sex ratio del parassitoide oofago Trissolcus basalis (Woll.) mentre ovidepone su una ovatura di Nezara viridula (L.) in risposta sia alla presenza di femmine appartenenti alla stessa specie che alle loro sostanze marcanti. In entrambi i casi le femmine del T. basalis hanno prodotto una sex ratio maggiore (espressa come proporzione dei maschi) in accordo con quanto previsto dalla teoria della competizione localizzata per l'accoppiamento, local mate competition (LMC). La capacità delle femmine del parassitoide di modificare la loro sex ratio è dovuta sia alla diminuzione del numero di uova parassitizzate per ciascuna femmina, con il conseguente aumento del numero di uova maschili (effetto sequenza); che ad un diretto aumento del numero di uova che daranno maschi. Con tutta probabilità il feromone di marcatura esterno deposto dalla prima femmina ovideponente fornisce lo stimolo alle femmine successive per modificare la loro sex ratio. Parole chiave: riproduzione arrenotoca; competizione localizzata per l'accoppiamento, Nezara viridula, ovatura.

    Female-released sex pheromones mediating courtship behavior in Lysiphlebus testaceipes males.

    Get PDF
    Ethological aspects and chemical communication at close-range between the sexes of Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) have been investigated through behavioral bioassays and chemical analysis. The attractiveness toward males of whole-body extracts of females and males in hexane and acetone was evaluated, adopting male fanning behavior as a key behavioral component. Also, the activity of polar and nonpolar fraction of female-body extract in hexane obtained using solid-phase extraction technique was investigated. In order to identify cuticular compounds, male and female whole-body extracts with hexane and acetone were analyzed by gas chromatography-mass spectrometry. The results showed that males exhibit a behavior including 4 phases when exposed to virgin females: premount, mount, copulation, and post-copulation. A preliminary courtship of the male included wing fanning, an extension and vibration of the wings for 1 to 2 seconds. Also, some original aspects not described for other species were carried out. The average duration of the entire sequence of events was 138.80 ± 19.51 sec. Also, males displayed significantly more wing fanning behavior in response to female whole-body hexane extracts (70.83%) than female whole-body acetone extracts (33.3%). Furthermore, males did not respond to male-body extracts or to the control (pure hexane and acetone), suggesting that the sex pheromone is composed of cuticular hydrocarbons that are also involved in the male courtship behavior. When hexane extracts of whole females were fractionated on silica gel and exposed to males, more activity was recorded for the nonpolar fraction (50.0%) than the polar fraction (27.7%), but no significant statistical difference was found. Significant differences were detected comparing the control (not fractionated extract) with the polar fraction, but not with the nonpolar fraction. A homologous series of n-alkanes with chain lengths from C19 to C30 carbon atoms was identified and quantified in the solvent extracts of wasp males and females. Between male and female extracts, there was a statistically significant difference in the average quantity of some of these hydrocarbons, such as C27, C28, and C29

    Prospects of herbivore egg-killing plant defenses for sustainable crop protection

    Get PDF
    Due to a growing demand of food production worldwide, new strategies are suggested to allow for sustainable production of food with minimal effects on natural resources. A promising alternative to the application of chemical pesticides is the implementation of crops resistant to insect pests. Plants produce compounds that are harmful to a wide range of attackers, including insect pests; thus, exploitation of their natural defense system can be the key for the development of pest-resistant crops. Interestingly, some plants possess a unique first line of defense that eliminates the enemy before it becomes destructive: egg-killing. Insect eggs can trigger (1) direct defenses, mostly including plant cell tissue growth or cell death that lead to eggs desiccating, being crushed or falling off the plant or (2) indirect defenses, plant chemical cues recruiting natural enemies that kill the egg or hatching larvae (parasitoids). The consequences of plant responses to eggs are that insect larvae do not hatch or that they are impeded in development, and damage to the plant is reduced. Here, we provide an overview on the ubiquity and evolutionary history of egg-killing traits within the plant kingdom including crops. Up to now, little is known on the mechanisms and on the genetic basis of egg-killing traits. Making use of egg-killing defense traits in crops is a promising new way to sustainably reduce losses of crop yield. We provide suggestions for new breeding strategies to grow egg-killing crops and improve biological control

    First report of Melittobia australica Girault in Europe and new record of M. acasta (Walker) for Italy

    Get PDF
    Melittobia acasta and M. australica are newly recorded from Sicily, Italy, and the second species is reported in Europe for the first time. A short historical background about Melittobia parasitoid wasps, their hosts, and distribution, with emphasis in those two species is presented together with illustrations to facilitate their identification. Brief discussion about the presence and possible distribution of the species in Sicily is also included

    Chemical Ecology of Egg Parasitoids Associated with True Bugs

    Get PDF
    Parasitoids representing some 15 families of Hymenoptera develop in insect eggs; three of these families, Platygastridae (= Scelionidae), Mymaridae, and Encyrtidae, are associated with Heteroptera. Several species of heteropteran egg parasitoids are or may be important for biological pest control. Successful parasitism of insect herbivores by insect parasitoids arises through several phases of host searching, which lead female wasps to the vicinity of, or in contact with, their hosts. During the host location process, females encounter and explore a variety of stimuli, among which chemical cues (i.e., semiochemicals or infochemicals) play a pivotal role. Female parasitoids are under selection pressure to efficiently invest their limited time on the location and exploitation of host-derived stimuli. In general, the levels of reliability and detectability of a particular stimulus are inversely correlated. Female parasitic wasps adopt differing strategies to solve this dilemma. In this paper we focus on the various host selection strategies employed by heteropteran egg parasitoids and possible means whereby the chemically mediated behavior of these wasps may be exploited to enhance biological pest control

    Host chemical footprints induce host sex discrimination ability in egg parasitoids

    Get PDF
    Trissolcus egg parasitoids, when perceiving the chemical footprints left on a substrate by pentatomid host bugs, adopt a motivated searching behaviour characterized by longer searching time on patches were signals are present. Once in contact with host chemical footprints, Trissolcus wasps search longer on traces left by associated hosts rather than non-associated species, and, in the former case, they search longer on traces left by females than males. Based on these evidences, we hypothesized that only associated hosts induce the ability to discriminate host sex in wasps. To test this hypothesis we investigated the ability of Trissolcus basalis, T. brochymenae, and Trissolcus sp. to distinguish female from male Nezara viridula, Murgantia histrionica, and Graphosoma semipunctatum footprints. These three pentatomid bugs were selected according to variable association levels. Bioassays were conducted on filter paper sheets, and on Brassica oleracea (broccoli) leaves. The results confirmed our hypothesis showing that wasps spent significantly more time on female rather than male traces left by associated hosts on both substrates. No differences were observed in the presence of traces left by non-associated hosts. The ecological consequences for parasitoid host location behaviour are discussed

    The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae)

    Get PDF
    Termite gut is host to a complex microbial community consisting of prokaryotes, and in some cases flagellates, responsible for the degradation of lignocellulosic material. Here we report data concerning the analysis of the gut microbiota of Reticulitermes lucifugus (Rossi), a lower termite species that lives in underground environments and is widespread in Italy, where it causes damage to wood structures of historical and artistic monuments. A 16S rRNA gene clone library revealed that the R. lucifugus gut is colonized by members of five phyla in the domain Bacteria: Firmicutes (49 % of clones), Proteobacteria (24 %), Spirochaetes (14 %), the candidatus TG1 phylum (12 %), and Bacteroidetes (1 %). A collection of cellulolytic aerobic bacteria was isolated from the gut of R. lucifugus by enrichment cultures on different cellulose and lignocellulose substrates. Results showed that the largest amount of culturable cellulolytic bacteria of R. lucifugus belongs to Firmicutes in the genera Bacillus and Paenibacillus (67 %). These isolates are also able to grow on xylan and show the largest clear zone diameter in the Congo red test. Reticulitermes lucifugus hosts a diverse community of bacteria and could be considered an acceptable source of hydrolytic enzymes for biotechnological applications

    Foraging behavior of two egg parasitoids exploiting chemical cues from the stink bug Piezodorus guildinii (Hemiptera: Pentatomidae)

    Get PDF
    Several parasitoids attacking the same host may lead to competition. Adult parasitoids’ abilities to find, parasitize and defend hosts determine resource’s retention potential. In soybean, two egg parasitoid species, Telenomus podisi and Trissolcus urichi (Hymenoptera: Platygastridae), compete on the egg masses of Piezodorus guildinii (Hemiptera: Pentatomidae) one of the major pest of this crop. We evaluated parasitoid’s abilities to exploit hosts’ footprints; and parasitoid’s behavior when competing for the same host. Both arena residence time and retention time were similar for T. podisi and T. urichi on male or female host footprints. In its turn, T. urichi reentered the area contaminated with P. guildinii more times and staid longer in it than T. podisi. Furthermore, when competing for the same egg mass, each parasitoid species won (was in possession of the host by the end of the experiment) half of the replicates, and the number of times each wasp species contacted host in the first place was similar, without affecting replicate outcome (who ultimately won). Both species started agonistic and non-agonistic encounters. This study provides information about the potential interspecific competition between these parasitoids, which contributes to evaluate the compatibility of multiple natural enemies’ biological control programs for stink bugs.Fil: Cingolani, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Barakat, María Candela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Liljesthrom, Gerardo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Colazza, Stefano. Universita Degli Studi Di Palermo.; Itali
    • …
    corecore