168 research outputs found
Recommended from our members
Regeneration of TiO 2 Nanotube Arrays after Long-Term Cell and Tissue Culture for Multiple Use - An Environmental Scanning Electron Microscopy (ESEM) Survey of Adult Pig Retina and beyond
Long-term organotypic culture of adult tissues not only open up possibilities for studying complex structures of explants in vitro, but also can be employed e.g. to investigate pathological changes, their fingerprints on tissue mechanics, as well as the effectiveness of drugs. While conventional culture methods do not allow for survival times of more than a few days, we have demonstrated recently that TiO 2 nanotube arrays allow to maintain integrity of numerous tissues, including retina, brain, spline and tonsils, for as long as 2 weeks in vitro. A mystery in culturing has been the interaction of tissue with these substrates, which is also reflected by tissue debris after liftoff. As the latter reveals fingerprints of tissue adhesion and impedes with nanotube array reuse, we address within the present environmental scanning electron study debris nature and the effectiveness of cleaning approaches of distinct physical and chemical methods, including UV-light irradiation, O2 plasma treatment and application of an enzyme-based buffer. This will lays the foundation for large-scale regeneration and reuse of nanotube arrays in science and clinical research. © 2019 The Author(s)
Recommended from our members
Structural Breakdown of Collagen Type I Elastin Blend Polymerization
Biopolymer blends are advantageous materials with novel properties that may show performances way beyond their individual constituents. Collagen elastin hybrid gels are a new representative of such materials as they employ elastinâs thermo switching behavior in the physiological temperature regime. Although recent studies highlight the potential applications of such systems, little is known about the interaction of collagen and elastin fibers during polymerization. In fact, the final network structure is predetermined in the early and mostly arbitrary association of the fibers. We investigated type I collagen polymerized with bovine neck ligament elastin with up to 33.3 weight percent elastin and showed, by using a plate reader, zeta potential and laser scanning microscopy (LSM) experiments, that elastin fibers bind in a lateral manner to collagen fibers. Our plate reader experiments revealed an elastin concentration-dependent increase in the polymerization rate, although the rate increase was greatest at intermediate elastin concentrations. As elastin does not significantly change the structural metrics pore size, fiber thickness or 2D anisotropy of the final gel, we are confident to conclude that elastin is incorporated homogeneously into the collagen fibers
Laminin Adsorption and Adhesion of Neurons and Glial Cells on Carbon Implanted Titania Nanotube Scaffolds for Neural Implant Applications
Interfacing neurons persistently to conductive matter constitutes one of the key challenges when designing brain-machine interfaces such as neuroelectrodes or retinal implants. Novel materials approaches that prevent occurrence of loss of long-term adhesion, rejection reactions, and glial scarring are highly desirable. Ion doped titania nanotube scaffolds are a promising material to fulfill all these requirements while revealing sufficient electrical conductivity, and are scrutinized in the present study regarding their neuronâmaterial interface. Adsorption of laminin, an essential extracellular matrix protein of the brain, is comprehensively analyzed. The implantation-dependent decline in laminin adsorption is revealed by employing surface characteristics such as nanotube diameter, (Formula presented.) -potential, and surface free energy. Moreover, the viability of U87-MG glial cells and SH-SY5Y neurons after one and four days are investigated, as well as the materialâs cytotoxicity. The higher conductivity related to carbon implantation does not affect the viability of neurons, although it impedes glial cell proliferation. This gives rise to novel titania nanotube based implant materials with long-term stability, and could reduce undesirable glial scarring
Recommended from our members
Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds
Development of neuronal tissue, such as folding of the brain, and formation of the fovea centralis in the human retina are intimately connected with the mechanical properties of the underlying cells and the extracellular matrix. In particular for neuronal tissue as complex as the vertebrate retina, mechanical properties are still a matter of debate due to their relation to numerous diseases as well as surgery, where the tension of the retina can result in tissue detachment during cutting. However, measuring the elasticity of adult retina wholemounts is difficult and until now only the mechanical properties at the surface have been characterized with micrometer resolution. Many processes, however, such as pathological changes prone to cause tissue rupture and detachment, respectively, are reflected in variations of retina elasticity at smaller length scales at the protein level. In the present work we demonstrate that freely oscillating cantilevers composed of nanostructured TiO2 scaffolds can be employed to study the frequency-dependent mechanical response of adult mammalian retina explants at the nanoscale. Constituting highly versatile scaffolds with strong tissue attachment for long-term organotypic culture atop, these scaffolds perform damped vibrations as fingerprints of the mechanical tissue properties that are derived using finite element calculations. Since the tissue adheres to the nanostructures via constitutive proteins on the photoreceptor side of the retina, the latter are stretched and compressed during vibration of the underlying scaffold. Probing mechanical response of individual proteins within the tissue, the proposed mechanical spectroscopy approach opens the way for studying tissue mechanics, diseases and the effect of drugs at the protein level
Recommended from our members
Programing stimuli-responsiveness of gelatin with electron beams: Basic effects and development of a hydration-controlled biocompatible demonstrator
Biomimetic materials with programmable stimuli responsiveness constitute a highly attractive material class for building bioactuators, sensors and active control elements in future biomedical applications. With this background, we demonstrate how energetic electron beams can be utilized to construct tailored stimuli responsive actuators for biomedical applications. Composed of collagen-derived gelatin, they reveal a mechanical response to hydration and changes in pH-value and ion concentration, while maintaining their excellent biocompatibility and biodegradability. While this is explicitly demonstrated by systematic characterizing an electron-beam synthesized gelatin-based actuator of cantilever geometry, the underlying materials processes are also discussed, based on the fundamental physical and chemical principles. When applied within classical electron beam lithography systems, these findings pave the way for a novel class of highly versatile integrated bioactuators from micro-to macroscales
Conductive Tracks in Carbon Implanted Titania Nanotubes: Atomic-Scale Insights from Experimentally Based Ab Initio Molecular Dynamics Modeling
Ion implantation of titania nanotubes is a highly versatile approach for
tailoring structural and electrical properties. While recently self-organized
nanoscale compositional patterning has been reported, the atomistic
foundations and impact on electronic structure are not established at this
point. To study these aspects, ab initio molecular dynamic simulations based
on atomic compositions in C implanted titania nanotubes according to elastic
recoil detection analysis are employed. Consistent with experimental data,
carbon accumulates in chainlike precipitates, which are favorable for
enhancing conductivity, as revealed by density-functional theory electronic
ground states calculations are demonstrated
Recommended from our members
Compositional Patterning in Carbon Implanted Titania Nanotubes
Ranging from novel solar cells to smart biosensors, titania nanotube arrays constitute a highly functional material for various applications. A promising route to modify material characteristics while preserving the amorphous nanotube structure is present when applying low-energy ion implantation. In this study, the interplay of phenomenological effects observed upon implantation of low fluences in the unique 3D structure is reported: sputtering versus readsorption and plastic flow, amorphization versus crystallization and compositional patterning. Patterning within the oxygen and carbon subsystem is revealed using transmission electron microscopy. By applying a CahnâHilliard approach within the framework of driven alloys, characteristic length scales are derived and it is demonstrated that compositional patterning is expected on free enthalpy grounds, as predicted by density functional theory based ab initio calculations. Hence, an attractive material with increased conductivity for advanced devices is provided. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH Gmb
Recommended from our members
Nanoporous Morphogenesis in Amorphous Carbon Layers: Experiments and Modeling on Energetic Ion Induced SelfâOrganization
Nanoporous amorphous carbon constitutes a highly relevant material for a multitude of applications ranging from energy to environmental and biomedical systems. In the present work, it is demonstrated experimentally how energetic ions can be utilized to tailor porosity of thin sputter deposited amorphous carbon films. The physical mechanisms underlying self-organized nanoporous morphogenesis are unraveled by employing extensive molecular dynamics and phase field models across different length scales. It is demonstrated that pore formation is a defect induced phenomenon, in which vacancies cluster in a spinodal decomposition type of self-organization process, while interstitials are absorbed by the amorphous matrix, leading to additional volume increase and radiation induced viscous flow. The proposed modeling framework is capable to reproduce and predict the experimental observations from first principles and thus opens the venue for computer assisted design of nanoporous frameworks
Recommended from our members
Collagen-iron oxide nanoparticle based ferrogel: Large reversible magnetostrains with potential for bioactuation
Smart materials such as stimuli responsive polymeric hydrogels offer unique possibilities for tissue engineering and regenerative medicine. As, however, most synthetic polymer systems and their degradation products lack complete biocompatibility and biodegradability, this study aims to synthesize a highly magnetic responsive hydrogel, based on the abundant natural biopolymer collagen. As the main component of vertebratal extracellular matrix, it reveals excellent biocompatibility. In combination with incorporated magnetic iron oxide nanoparticles, a novel smart nano-bio-ferrogel can be designed. While retaining its basic biophysical properties and interaction with living cells, this collagen-nanoparticle hydrogel can be compressed to 38% of its original size and recovers to 95% in suitable magnetic fields. Besides the phenomenology of this scenario, the underlying physical scenarios are also discussed within the framework of network models. The observed reversible peak strains as large as 150% open up possibilities for the fields of biomedical actuation, soft robotics and beyond. © 2020 The Author(s). Published by IOP Publishing Lt
Recommended from our members
Energetic electron assisted synthesis of highly tunable temperature-responsive collagen/elastin gels for cyclic actuation: macroscopic switching and molecular origins
Thermoresponsive bio-only gels that yield sufficiently large strokes reversibly and without large hysteresis at a well-defined temperature in the physiological range, promise to be of value in biomedical application. Within the present work we demonstrate that electron beam modification of a blend of natural collagen and elastin gels is a route to achieve this goal, viz. to synthesize a bioresorbable gel with largely reversible volume contractions as large as 90% upon traversing a transition temperature that can be preadjusted between 36 °C and 43 °C by the applied electron dose. Employing circular dichroism and temperature depending confocal laser scanning microscopy measurements, we furthermore unravel the mechanisms underlying this macroscopic behavior on a molecular and network level, respectively and suggest a stringent picture to account for the experimental observations. © 2019, The Author(s)
- âŠ