8 research outputs found

    The pathobiology of pediatric B-cell precursor acute lymphoblastic leukemia

    Get PDF
    Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease, caused by the malignant transformation of either T-cell (~15% of the cases) or B-cell progenitors (~85% of the cases). To further improve the survival of children with ALL, new targeted treatment strategies are warranted. Therefore, it is essential to gain insight in the pathobiology of childhood ALL. The scope of this thesis is on pediatric B-cell precursor ALL (BCP-ALL). We studied: 1) the occurrence of tyrosine kinase fusion genes (i.e. ABL and JAK class) and JAK2 mutations in pediatric BCP-ALL cases; 2) the efficacy of JAK inhibitors in JAK2 aberrant (translocations and point mutations) leukemic cells; 3) the potential of STAP1 as therapeutic target for DUX4-rearranged ALL cases; 4) the association between copy number aberrations in B-cell development genes (e.g. IKZF1, PAX5), long‑term prognosis, and cellular drug resistance; 5) the supportive properties and gene expression profiles of mesenchymal stromal cells derived from pediatric BCP-ALL patients and healthy pediatric donors. Our results show efficacy of new precision medicines, i.e. JAK inhibitors, but we also identified important limitations that should be overcome. Moreover, we show that the genetic context matters and that the effect of anti-cancer drugs should be studied in the proper genetic context. Lastly, we show that mesenchymal stromal cells are not actively involved in BCP-ALL leukemogenesis. Instead leukemic cells actively modulate signaling pathways in MSCs to support BCP-ALL cell survival. Targeting this interaction between BCP‑ALL cells and MSCs might be an attractive alternative treatment strategy

    Nationwide evaluation of mutation-tailored treatment of gastrointestinal stromal tumors in daily clinical practice

    Get PDF
    Background Molecular analysis of KIT and PDGFRA is critical for tyrosine kinase inhibitor treatment selection of gastrointestinal stromal tumors (GISTs) and hence recommended by international guidelines. We performed a nationwide study into the application of predictive mutation testing in GIST patients and its impact on targeted treatment decisions in clinical practice. Methods Real-world clinical and pathology information was obtained from GIST patients with initial diagnosis in 2017-2018 through database linkage between the Netherlands Cancer Registry and the nationwide Dutch Pathology Registry. Results Predictive mutation analysis was performed in 89% of the patients with high risk or metastatic disease. Molecular testing rates were higher for patients treated in expertise centers (96%) compared to non-expertise centers (75%, P < 0.01). Imatinib therapy was applied in 81% of the patients with high risk or metastatic disease without patient's refusal or adverse characteristics, e.g., comorbidities or resistance mutations. Mutation analysis that was performed in 97% of these imatinib-treated cases, did not guarantee mutation-tailored treatment: 2% of these patients had the PDGFRA p.D842V resistance mutation and 7% initiated imatinib therapy at the normal instead of high dose despite of having a KIT exon 9 mutation. Conclusion In conclusion, nationwide real-world data show that over 81% of the eligible high risk or metastatic disease patients receive targeted therapy, which was tailored to the mutation status as recommended in guidelines in 88% of cases. Therefore, still 27% of these GIST patients misses out on mutation-tailored treatment. The reasons for suboptimal uptake of testing and treatment require further study.Experimentele farmacotherapi

    Nationwide evaluation of mutation-tailored anti-EGFR therapy selection in patients with colorectal cancer in daily clinical practice

    Get PDF
    For a nationwide real-word data study on the application of predictive mutation testing of patients with colorectal cancer (CRC) for anti-epidermal growth factor receptor (EGFR) therapy stratification, pathology data were collected from the Dutch Pathology Registry from October 2017 until June 2019 (N=4060) and linked with the Netherlands Cancer Registry. Mutation testing rates increased from 24% at diagnosis of stage IV disease to 60% after 20-23 months of follow-up (p<0.001). Application of anti-EGFR therapy in KRAS/NRAS wild-type patients was mainly observed from the third treatment line onwards (65% vs 17% in first/second treatment line (p<0.001)). The national average KRAS/NRAS/BRAF mutation rate was 63.9%, being similar for next-generation sequencing (NGS)-based approaches and single gene tests (64.4% vs 61.2%, p=ns). NGS-based approaches detected more additional potential biomarkers, for example, ERBB2 amplifications (p<0.05). Therefore, single gene tests are suitable to stratify patients with mCRC for anti-EGFR therapy, but NGS is superior enabling upfront identification of therapy resistance or facilitate enrolment into clinical trials.Molecular tumour pathology - and tumour geneticsMTG2 - Moleculaire genetica van gastrointestinale tumore

    Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    Get PDF
    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1- like group were higher than in the non-BCR-ABL1-like B-others (p < 0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCRABL1- like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCRABL1- like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome

    JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia

    Get PDF
    JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL

    Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia

    Get PDF
    Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is associated with a high frequency of copy number alterations (CNAs) in IKZF1, EBF1, PAX5, CDKN2A/B, RB1, BTG1, ETV6, and/or the PAR1 region (henceforth: B-cell development genes). We aimed to gain insight in the association between CNAs in these genes, clinical outcome parameters, and cellular drug resistance. 71% of newly diagnosed pediatric BCP-ALL cases harbored one or more CNAs in these B-cell development genes. The distribution and clinical relevance of these CNAs was highly subtype-dependent. In the DCOG-ALL10 cohort, only loss of IKZF1 associated as single marker with unfavorable outcome parameters and cellular drug resistance. Prednisolone resistance was observed in IKZF1-deleted primary high hyperdiploid cells (~1500-fold), while thiopurine resistance was detected in IKZF1-deleted primary BCR-ABL1-like and non-BCR-ABL1-like B-other cells (~2.7-fold). The previously described risk stratification classifiers, i.e. IKZF1plus and integrated cytogenetic and CNA classification, both predicted unfavorable outcome in the DCOG-ALL10 cohort, and associated with ex vivo drug cellular resistance to thiopurines, or L-asparaginase and thiopurines, respectively. This resistance could be attributed to overrepresentation of BCR-ABL1-like cases in these risk groups. Taken together, our data indicate that the prognostic value of CNAs in B-cell development genes is linked to subtype-related drug responses

    Cost-Effectiveness of Parallel Versus Sequential Testing of Genetic Aberrations for Stage IV Non-Small-Cell Lung Cancer in the Netherlands

    No full text
    PURPOSE: A large number of targeted treatment options for stage IV nonsquamous non-small-cell lung cancer with specific genetic aberrations in tumor DNA is available. It is therefore important to optimize diagnostic testing strategies, such that patients receive adequate personalized treatment that improves survival and quality of life. The aim of this study is to assess the efficacy (including diagnostic costs, turnaround time (TAT), unsuccessful tests, percentages of correct findings, therapeutic costs, and therapeutic effectiveness) of parallel next generation sequencing (NGS)-based versus sequential single-gene-based testing strategies routinely used in patients with metastasized non-small-cell lung cancer in the Netherlands. METHODS: A diagnostic microsimulation model was developed to simulate 100,000 patients with prevalence of genetic aberrations, extracted from real-world data from the Dutch Pathology Registry. These simulated patients were modeled to undergo different testing strategies composed of multiple tests with different test characteristics including single-gene and panel tests, test accuracy, the probability of an unsuccessful test, and TAT. Diagnostic outcomes were linked to a previously developed treatment model, to predict average long-term survival, quality-adjusted life-years (QALYs), costs, and cost-effectiveness of parallel versus sequential testing. RESULTS: NGS-based parallel testing for all actionable genetic aberrations is on average €266 cheaper than single-gene-based sequential testing, and detects additional relevant targetable genetic aberrations in 20.5% of the cases, given a TAT of maximally 2 weeks. Therapeutic costs increased by €8,358, and 0.12 QALYs were gained, leading to an incremental cost-effectiveness ratio of €69,614/QALY for parallel versus sequential testing. CONCLUSION: NGS-based parallel testing is diagnostically superior over single-gene-based sequential testing, as it is cheaper and more effective than sequential testing. Parallel testing remains cost-effective with an incremental cost-effectiveness ratio of 69,614 €/QALY upon inclusion of therapeutic costs and long-term outcomes

    Molecular dataset: Nationwide evaluation of mutation-tailored anti-EGFR therapy selection in patients with colorectal cancer in daily clinical practice

    No full text
    Molecular pathology reports of patients with colorectal carcinoma were collected from PALGA using specific queries from 1 October 2017 to 30 June 2019 (for details see: Figure 1A PMID: 34675090 / DOI: 10.1136/jclinpath-2021-207865). Manual curation of these reports showed 4060 patients with CRC undergoing predictive mutation analyses in this 21-month study period. Details of the mutation analyses (ie, technique, gene panel, diagnostic yield) were manually extracted from these reports and shown in the current dataset
    corecore