12 research outputs found

    Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    Get PDF
    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions

    JT9D performance deterioration results from a simulated aerodynamic load test

    Get PDF
    The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts

    Effect of rotor-to-stator spacing on acoustic performance of a full-scale fan (QF-5) for turbofan engines

    Get PDF
    A study was made of the effect of increasing the fan rotor-to-stator spacing on the noise level of a full-scale, single-stage, 1.6-pressure-ratio fan. Noise data were obtained with axial spacing of 1.14, 1.65, and 2.27 rotor chord lengths. Over this spacing range, data indicate a reduction of 1.5 PNdb. Apparently, rotor-alone noise at the frequency at which the rotor-stator interaction noise was cut off limited the noise reduction for the QF-5 fan. It seems, however, that the reduction in sound power level with increases in spacing is potentially about 6 db over the range of spacing tested

    Acoustic and aerodynamic performance of a 1.83 meter (6 foot) diameter 1.2 pressure ratio fan (QF-6)

    Get PDF
    A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle

    Aerodynamic and acoustic effects of eliminating core swirl from a full scale 1.6 stage pressure ratio fan (QF-5A)

    Get PDF
    Fan QF-5A was a modification of fan QF-5 which had an additional core stator and adjusted support struts to turn the core exit flow from a 30 deg swirl to the axial direction. This modification was necessary to eliminate the impingement of the swirling core flow on the axial support pylon of the NASA-Lewis Quiet Fan Facility that caused aerodynamic, acoustic and structural problems with the original fan stage at fan speeds greater than 85 percent of design. The redesigned fan QF-5A did obtain the design bypass ratio with an increased core airflow suggesting that the flow problem was resolved. Acoustically, the redesigned stage showed a low frequency broadband noise reduction compared to the results for fan QF-5 at similar operating conditions

    Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    Get PDF
    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust

    Noise of fan designed to reduce stator lift fluctuations

    Get PDF
    An existing fan stage was redesigned to reduce stator lift fluctuations and was acoustically tested at three nozzle sizes for reduced noise generation. The lift fluctuations on the stator were reduced by increasing the stator cord, adjusting incidence angles, and adjusting the rotor velocity diagrams. Broadband noise levels were signficantly reduced in the middle to high frequencies. Blade passage tone sound power was not lessened, but decreases in the harmonics were observed. Aerodynamic improvements in both performance and efficiency were obtained

    Noise generated by quiet engine fans. 2: Fan A

    Get PDF
    A significant effort within the NASA Quiet Engine Program has been devoted to acoustical evaluation at the Lewis Research Center noise test facility of a family of full-scale fans. This report, documents the noise results obtained with fan A - a 1.5-pressure-ratio, 1160-ft/sec-tip-speed fan. The fan is described and some aerodynamic operating data are given. Far-field noise around the fan was measured for a variety of configurations pertaining to acoustical treatment and over a range of operating conditions. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are power spectra and sideline perceived noise levels. Some representative 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided

    Effects of long-chord acoustically treated stator vanes on fan noise. 2: Effect of acoustical treatment

    Get PDF
    A set of long chord stator vanes was designed to replace the vanes in an existing fan stage. The long chord stator vanes consisted of a turning section and axial extension pieces, all of which incorporated acoustic damping material. The long chord stator vanes were tested in two lengths, with the long version giving more noise reduction than the short, primarily because of the additional lining material. The noise reduction achieved with the acoustically treated long chord stator vanes was compared with the reduction achieved by an acoustically treated exhaust splitter. The long chord stator was at least as good as the splitter as a method for incorporating acoustic lining material. In addition, comparing an acoustic three ring inlet and an acoustic wall-only inlet discloses that the wall-only inlet could be used in an engine where the noise reduction requirements are not too stringent
    corecore