842 research outputs found
Determining physiological reaction probabilities to noise events during sleep
Some of the activations that occur during sleep, e.g. awakening reactions, can be considered adverse effects of noise events (e.g., airplane overflights or train passings) during the night. The occurrence of such reactions is an important indicator of the sleep disturbing potential of the particular noise stimulus and it is often desired to exactly quantify that potential in terms of a probability. Awakenings are considered the strongest form of reaction to noise stimuli during sleep and are one of the most often adopted criteria in night time noise protection concepts. However, the correct determination of noise induced awakening probability has given rise to debate in the scientific community in recent years. Because during every night's sleep, spontaneous awakenings can occur at any time, it remains unknown in principle, whether a particular awakening observed during the presence of a noise stimulus was induced by that stimulus or emerged spontaneously. Nevertheless, correctly determining the awakening probability in question is key when it comes to forecasting noise effects during the night. This article introduces two definitions of reaction probability, discusses their advantages and disadvantages, and develops a model of the influence of the time window duration in which reactions of sleepers are screened on the calculated reaction probabilit
Environmental disturbance confounds prenatal glucocorticoid programming experiments in Wistar rats
Abstract Low birth weight in humans is predictive of hypertension in adult life, and while the mechanisms underlying this link remain unknown, fetal overexposure to glucocorticoids has been implicated. We have previously shown that prenatal dexamethasone (DEX) exposure in the rat lowers birth weight and programmes adult hypertension. This current study aimed to unravel the molecular nature of this hypertension. However, unknowingly, post hoc investigations revealed that our animals had been subjected to environmental noise stresses from an adjacent construction site, which were sufficient to confound our prenatal DEX-programming experiments. This perinatal stress successfully established low birth weight, hypercorticosteronaemia, insulin resistance, hypertension and hypothalamic-pituitary -adrenal axis dysfunction in vehicle (VEH)-treated offspring, such that the typical distinctions between both treatment groups were ameliorated. The lack of an additional effect on DEX-treated offspring is suggestive of a maximal effect of perinatal stress and glucocorticoids, serving to prevent against the potentially detrimental effects of sustained glucocorticoid hyper-exposure. Finally, this paper serves to inform researchers of the potential detrimental effects of neighbouring construction sites to their experiments. As research institutions expand and respond to everchanging building and animal welfare regulations, they are required to undergo either new construction and/or renovation. However, such structural changes are associated with a plethora of nuisances, such as noise and vibration, with each disturbance being capable of powerfully stimulating the hypothalamic -pituitary -adrenal (HPA) axis. 1 The auditory system is permanently open -even during sleep. Its rapid and overshooting excitations in response to noise signals are subcortically connected, via the amygdala, to the HPA axis, resulting in corticotrophin releasing hormone and adrenocorticotrophic hormone release. 2 Animal experiments show noise-induced changes in the sensitivity of glucocorticoid receptor (GR) by increase of heat-shock proteins 3 and ultrastructural changes of the adrenal gland. 4 Increased cortisol levels have been found in humans when exposed to aircraft 5 or road traffic noise, 6 even during sleep, 7 implying these effects are mainly without mental control. Of course, increased glucocorticoid and sympathetic neural secretion is a perfect short-term stress response, coordinating appropriate metabolic and vascular changes, and thereby assisting the individual to negotiate the stressor. However, over prolonged time periods, such as persistent noise-induced stress responses, can be gravely damaging to health. 2,8 Numerous animal studies have documented the programming effects of pre-and postnatal stress on offspring physiology and behaviour, which are remarkably analogous to those induced by fetal glucocorticoid overexposure. Exposing pregnant dams to stressful stimuli results in both maternal and fetal HPA activation. 9,10 Moreover, these offspring display an activated HPA axis till weaning, as adults are more anxious and stress-responsive
A thermionic electron gun to characterize silicon drift detectors with electrons
The TRISTAN detector is a new detector for electron spectroscopy at the Karlsruhe Tritium Neutrino (KATRIN) experiment. The semiconductor detector utilizes the silicon drift detector technology and will enable the precise measurement of the entire tritium beta-decay electron spectrum. Thus, a significant fraction of the parameter space of potential neutrino mass eigenstates in the keV-mass regime can be probed. We developed a custom electron gun based on the effect of thermionic emission to characterize the TRISTAN detector modules with mono -energetic electrons before installation into the KATRIN beamline. The electron gun provides an electron beam with up to 25 keV kinetic energy and an electron rate in the order of 10 5 electrons per second. This manuscript gives an overview of the design and commissioning of the electron gun. In addition, we will shortly discuss a first measurement with the electron gun to characterize the electron response of the TRISTAN detector
A Clinical Trial to Validate Event-Related Potential Markers of Alzheimer\u27s Disease in Outpatient Settings
INTRODUCTION: We investigated whether event-related potentials (ERP) collected in outpatient settings and analyzed with standardized methods can provide a sensitive and reliable measure of the cognitive deficits associated with early Alzheimer\u27s disease (AD).
METHODS: A total of 103 subjects with probable mild AD and 101 healthy controls were recruited at seven clinical study sites. Subjects were tested using an auditory oddball ERP paradigm.
RESULTS: Subjects with mild AD showed lower amplitude and increased latency for ERP features associated with attention, working memory, and executive function. These subjects also had decreased accuracy and longer reaction time in the target detection task associated with the ERP test.
DISCUSSION: Analysis of ERP data showed significant changes in subjects with mild AD that are consistent with the cognitive deficits found in this population. The use of an integrated hardware/software system for data acquisition and automated data analysis methods make administration of ERP tests practical in outpatient settings
Cognitive reserve in granulin-related frontotemporal dementia: from preclinical to clinical stages
OBJECTIVE
Consistent with the cognitive reserve hypothesis, higher education and occupation attainments may help persons with neurodegenerative dementias to better withstand neuropathology before developing cognitive impairment. We tested here the cognitive reserve hypothesis in patients with frontotemporal dementia (FTD), with or without pathogenetic granulin mutations (GRN+ and GRN-), and in presymptomatic GRN mutation carriers (aGRN+).
METHODS
Education and occupation attainments were assessed and combined to define Reserve Index (RI) in 32 FTD patients, i.e. 12 GRN+ and 20 GRN-, and in 17 aGRN+. Changes in functional connectivity were estimated by resting state fMRI, focusing on the salience network (SN), executive network (EN) and bilateral frontoparietal networks (FPNs). Cognitive status was measured by FTD-modified Clinical Dementia Rating Scale.
RESULTS
In FTD patients higher level of premorbid cognitive reserve was associated with reduced connectivity within the SN and the EN. EN was more involved in FTD patients without GRN mutations, while SN was more affected in GRN pathology. In aGRN+, cognitive reserve was associated with reduced SN.
CONCLUSIONS
This study suggests that cognitive reserve modulates functional connectivity in patients with FTD, even in monogenic disease. In GRN inherited FTD, cognitive reserve mechanisms operate even in presymptomatic to clinical stages
Spontaneous and deliberate future thinking: A dual process account
© 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
Post-antibiotic effect of orbifloxacin against Escherichia coli and Pseudomonas aeruginosa isolates from dogs
Orbifloxacin is a fluoroquinolone drug used widely in companion animal medicine. In this study, we firstly determined post-antibiotic effects (PAEs) and post-antibiotic sub-minimum inhibitory concentrations (MIC) effects (PA-SMEs) of orbifloxacin for two strains each of Escherichia coli and Pseudomonas aeruginosa from dogs, and these parameters were compared with those of enrofloxacin. At twice the MIC, the PAEs of orbifloxacin ranged from -0.28-0.93 h (mean, 0.29 h) for E. coli and -0.18-1.18 h (mean, 0.37 h) for P. aeruginosa. These parameters were not significantly different for E. coli and shorter for P. aeruginosa, compared to enrofloxacin (P < 0.05). Continued exposure to 0.1, 0.2, and 0.3 the MIC of orbifloxacin resulted in average PA-SMEs of 0.55, 1.11, and 2.03 h, respectively, for E. coli, and 1.04, 1.40, and 2.47 h, respectively, for P. aeruginosa. These PA-SMEs, which had no significant differences with those of enrofloxacin, were significantly longer than the corresponding PAEs (P < 0.05). These results suggest that the PA-SME of orbifloxacin for E. coli and P. aeruginosa can be meaningfully prolonged by increase of sub-MICs
Why are we not flooded by involuntary thoughts about the past and future? Testing the cognitive inhibition dependency hypothesis
© The Author(s) 2018In everyday life, involuntary thoughts about future plans and events occur as often as involuntary thoughts about the past. However, compared to involuntary autobiographical memories (IAMs), such episodic involuntary future thoughts (IFTs) have become a focus of study only recently. The aim of the present investigation was to examine why we are not constantly flooded by IFTs and IAMs given that they are often triggered by incidental cues while performing undemanding activities. One possibility is that activated thoughts are suppressed by the inhibitory control mechanism, and therefore depleting inhibitory control should enhance the frequency of both IFTs and IAMs. We report an experiment with a between-subjects design, in which participants in the depleted inhibition condition performed a 60-min high-conflict Stroop task before completing a laboratory vigilance task measuring the frequency of IFTs and IAMs. Participants in the intact inhibition condition performed a version of the Stroop task that did not deplete inhibitory control. To control for physical and mental fatigue resulting from performing the 60-min Stroop tasks in experimental conditions, participants in the control condition completed only the vigilance task. Contrary to predictions, the number of IFTs and IAMs reported during the vigilance task, using the probe-caught method, did not differ across conditions. However, manipulation checks showed that participants’ inhibitory resources were reduced in the depleted inhibition condition, and participants were more tired in the experimental than in the control conditions. These initial findings suggest that neither inhibitory control nor physical and mental fatigue affect the frequency of IFTs and IAMs.Peer reviewedFinal Published versio
Probing the screening of the Casimir interaction with optical tweezers
We measure the colloidal interaction between two silica microspheres in
aqueous solution in the distance range from m to m with the
help of optical tweezers. When employing a sample with a low salt
concentration, the resulting interaction is dominated by the repulsive
double-layer interaction which is fully characterized. The double-layer
interaction is suppressed when adding M of salt to our sample, thus
leading to a purely attractive Casimir signal. When analyzing the experimental
data for the potential energy and force, we find good agreement with
theoretical results based on the scattering approach. At the distance range
probed experimentally, the interaction arises mainly from the unscreened
transverse magnetic contribution in the zero-frequency limit, with nonzero
Matsubara frequencies providing a negligible contribution. In contrast, such
unscreened contribution is not included by the standard theoretical model of
the Casimir interaction in electrolyte solutions, in which the zero-frequency
term is treated separately as an electrostatic fluctuational effect. As a
consequence, the resulting attraction is too weak in this standard model, by
approximately one order of magnitude, to explain the experimental data.
Overall, our experimental results shed light on the nature of the thermal
zero-frequency contribution and indicate that the Casimir attraction across
polar liquids has a longer range than previously predicted.Comment: 19 pages, 9 figures; updated references; added a detailed discussion
of the subtraction procedure leading to the interaction potentia
- …