2,792 research outputs found

    A Test of the Particle Paradigm in N-Body Simulations

    Get PDF
    We present results of tests of the evolution of small ``fluid elements'' in cosmological N--body simulations, to examine the validity of their treatment as particles. We find that even very small elements typically collapse along one axis while expanding along another, often to twice or more their initial comoving diameter. This represents a possible problem for high--resolution uses of such simulations.Comment: Uses aasms4.sty; accepted for publication in ApJ Letters. Files available also at ftp://kusmos.phsx.ukans.edu/preprints/ates

    Decaying Neutrinos in Galaxy Clusters

    Get PDF
    Davidsen et al. (1991) have argued that the failure to detect uv photons from the dark matter DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison--Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.Comment: 14 pages, requires aaspp.sty. All latex, style files, and postscript files included in a uuencoded compressed-tar file. [email protected]

    A generalized equilibrium model for predicting daily to interannual shoreline response

    Get PDF
    Coastal zone management requires the ability to predict coastline response to storms and longer-term seasonal to interannual variability in regional wave climate. Shoreline models typically rely on extensive historical observations to derive site-specific calibration. To circumvent the challenge that suitable data sets are rarely available, this contribution utilizes twelve 5+ year shoreline data sets from around the world to develop a generalized model for shoreline response. The shared dependency of model coefficients on local wave and sediment characteristics is investigated, enabling the model to be recast in terms of these more readily measurable quantities. Study sites range from microtidal to macrotidal coastlines, spanning moderate- to high-energy beaches. The equilibrium model adopted here includes time varying terms describing both the magnitude and direction of shoreline response as a result of onshore/offshore sediment transport between the surf zone and the beach face. The model contains two coefficients linked to wave-driven processes: (1) the response factor (φ) that describes the "memory" of a beach to antecedent conditions and (2) the rate parameter (c) that describes the efficiency with which sand is transported between the beach face and surf zone. Across all study sites these coefficients are shown to depend in a predictable manner on the dimensionless fall velocity (Ω), that in turn is a simple function of local wave conditions and sediment grain size. When tested on an unseen data set, the new equilibrium model with generalized forms of φ and c exhibited high skill (Brier Skills Score, BSS = 0.85)

    Indirect effects of invasive species affecting the population structure of an ecosystem engineer

    Get PDF
    Species invasion is of increasing concern as non-native species often have negative impacts on ecosystems that they were introduced to. Invaders negatively affect the abundance of native species due to direct interactions like predation and competition. Additionally, invaders may benefit native biota by imposing indirect effects on resident species interactions. Invaders indirectly affect resident species via both density-mediated indirect interactions (DMIIs) and trait-mediated indirect interactions (TMIIs). Previous studies on these different indirect interactions have largely examined the effects on structuring ecological systems, with paying little attention to the role of body size. Here, we experimentally demonstrate that an invasive habitat modifier of European coastal waters, the Pacific oyster (Crassostrea gigas), alters the population structure of native mussels (Mytilus edulis) by modifying the size specific predator-prey interaction between the mussels and the shore crab (Carcinus maenas). In laboratory split-plot experiments, the presence of Pacific oysters reduced the mortality of unconditioned mussels as well as mussels that were acclimatized in presence of predatory cues, while being exposed to predation by crabs of two different size classes. The reduction in mortality was size-dependent both in terms of the predators and the prey. The presence of oysters notably reduced mussel mortality in presence of small crabs, while the mortality rate in presence of big crabs was less affected. Mussels that benefited the most by the presence of oysters were those of recruitment stages, smaller than 20 mm in shell length. Our results suggest that oysters cause a strong shift in the population structure of M. edulis, reducing particularly the mortality of smaller sized mussels

    Active Oxidation of a UHTC-Based CMC

    Get PDF
    The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation

    Heat Sponge: A Concept for Mass-Efficient Heat Storage

    Get PDF
    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a re-entry vehicle to reduce thermal- protection-system requirements. The heat sponge consists of a liquid/vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat-storage capacity of the liquid/vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over a temperature range of 200 F to 700 F. The use of pure ammonia as the working fluid provides a range of application between 432 deg R and 730 deg R, or the use of the more practical water-ammonia solution provides a range of application between 432 deg R and 1160 deg R or in between that of water and pure ammonia. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0-inch-diameter, hollow, stainless-steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water and a water-ammonia solution. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat-storage capacity calculated from measured temperature histories is compared to numerical predictions

    Vlasov limit and discreteness effects in cosmological N-body simulations

    Full text link
    We present the problematic of controlling the discreteness effects in cosmological N-body simulations. We describe a perturbative treatment which gives an approximation describing the evolution under self-gravity of a lattice perturbed from its equilibrium, which allows to trace the evolution of the fully discrete distribution until the time when particles approach one another ("shell-crossing"). Perturbed lattices are typical initial conditions for cosmological N-body simulations and thus we can describe precisely the early time evolution of these simulations. A quantitative comparison with fluid Lagrangian theory permits to study discreteness effects in the linear regime of the simulations. We show finally some work in progress about quantifying discreteness effects in the non-perturbative (highly non-linear) regime of cosmological N-body simulations by evolving different discretizations of the same continuous density field.Comment: 8 pages, proceedings (refereed) of "Vlasovia 2006", 2nd int'l workshop on the theory and applications of the Vlasov equation, Florence, September 2006. A more detailed report on recent progress may be found at arXiv:0805.135
    corecore