170 research outputs found

    KubeNow: A Cloud Agnostic Platform for Microservice-Oriented Applications

    Get PDF
    KubeNow is a platform for rapid and continuous deployment of microservice-based applications over cloud infrastructure. Within the field of software engineering, the microservice-based architecture is a methodology in which complex applications are divided into smaller, more narrow services. These services are independently deployable and compatible with each other like building blocks. These blocks can be combined in multiple ways, according to specific use cases. Microservices are designed around a few concepts: they offer a minimal and complete set of features, they are portable and platform independent, they are accessible through language agnostic APIs and they are encouraged to use standard data formats. These characteristics promote separation of concerns, isolation and interoperability, while coupling nicely with test-driven development. Among many others, some well-known companies that build their software around microservices are: Google, Amazon, PayPal Holdings Inc. and Netflix [11]

    Applications of the InChI in cheminformatics with the CDK and Bioclipse.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The InChI algorithms are written in C++ and not available as Java library. Integration into software written in Java therefore requires a bridge between C and Java libraries, provided by the Java Native Interface (JNI) technology. RESULTS: We here describe how the InChI library is used in the Bioclipse workbench and the Chemistry Development Kit (CDK) cheminformatics library. To make this possible, a JNI bridge to the InChI library was developed, JNI-InChI, allowing Java software to access the InChI algorithms. By using this bridge, the CDK project packages the InChI binaries in a module and offers easy access from Java using the CDK API. The Bioclipse project packages and offers InChI as a dynamic OSGi bundle that can easily be used by any OSGi-compliant software, in addition to the regular Java Archive and Maven bundles. Bioclipse itself uses the InChI as a key component and calculates it on the fly when visualizing and editing chemical structures. We demonstrate the utility of InChI with various applications in CDK and Bioclipse, such as decision support for chemical liability assessment, tautomer generation, and for knowledge aggregation using a linked data approach. CONCLUSIONS: These results show that the InChI library can be used in a variety of Java library dependency solutions, making the functionality easily accessible by Java software, such as in the CDK. The applications show various ways the InChI has been used in Bioclipse, to enrich its functionality

    Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse.

    Get PDF
    BACKGROUND: Predicting metabolic sites is important in the drug discovery process to aid in rapid compound optimisation. No interactive tool exists and most of the useful tools are quite expensive. RESULTS: Here a fast and reliable method to analyse ligands and visualise potential metabolic sites is presented which is based on annotated metabolic data, described by circular fingerprints. The method is available via the graphical workbench Bioclipse, which is equipped with advanced features in cheminformatics. CONCLUSIONS: Due to the speed of predictions (less than 50 ms per molecule), scientists can get real time decision support when editing chemical structures. Bioclipse is a rich client, which means that all calculations are performed on the local computer and do not require network connection. Bioclipse and MetaPrint2D are free for all users, released under open source licenses, and available from http://www.bioclipse.net.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Proteochemometric modeling of HIV protease susceptibility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major obstacle in treatment of HIV is the ability of the virus to mutate rapidly into drug-resistant variants. A method for predicting the susceptibility of mutated HIV strains to antiviral agents would provide substantial clinical benefit as well as facilitate the development of new candidate drugs. Therefore, we used proteochemometrics to model the susceptibility of HIV to protease inhibitors in current use, utilizing descriptions of the physico-chemical properties of mutated HIV proteases and 3D structural property descriptions for the protease inhibitors. The descriptions were correlated to the susceptibility data of 828 unique HIV protease variants for seven protease inhibitors in current use; the data set comprised 4792 protease-inhibitor combinations.</p> <p>Results</p> <p>The model provided excellent predictability (<it>R</it><sup>2 </sup>= 0.92, <it>Q</it><sup>2 </sup>= 0.87) and identified general and specific features of drug resistance. The model's predictive ability was verified by external prediction in which the susceptibilities to each one of the seven inhibitors were omitted from the data set, one inhibitor at a time, and the data for the six remaining compounds were used to create new models. This analysis showed that the over all predictive ability for the omitted inhibitors was <it>Q</it><sup>2 </sup><sub><it>inhibitors </it></sub>= 0.72.</p> <p>Conclusion</p> <p>Our results show that a proteochemometric approach can provide generalized susceptibility predictions for new inhibitors. Our proteochemometric model can directly analyze inhibitor-protease interactions and facilitate treatment selection based on viral genotype. The model is available for public use, and is located at HIV Drug Research Centre.</p
    • …
    corecore