3,303 research outputs found

    S-duality and 2d Topological QFT

    Full text link
    We study the superconformal index for the class of N=2 4d superconformal field theories recently introduced by Gaiotto. These theories are defined by compactifying the (2,0) 6d theory on a Riemann surface with punctures. We interpret the index of the 4d theory associated to an n-punctured Riemann surface as the n-point correlation function of a 2d topological QFT living on the surface. Invariance of the index under generalized S-duality transformations (the mapping class group of the Riemann surface) translates into associativity of the operator algebra of the 2d TQFT. In the A_1 case, for which the 4d SCFTs have a Lagrangian realization, the structure constants and metric of the 2d TQFT can be calculated explicitly in terms of elliptic gamma functions. Associativity then holds thanks to a remarkable symmetry of an elliptic hypergeometric beta integral, proved very recently by van de Bult.Comment: 25 pages, 11 figure

    Bootstrapping the superconformal index with surface defects

    Full text link
    The analytic properties of the N = 2 superconformal index are given a physical interpretation in terms of certain BPS surface defects, which arise as the IR limit of supersymmetric vortices. The residue of the index at a pole in flavor fugacity is interpreted as the index of a superconformal field theory without this flavor symmetry, but endowed with an additional surface defect. The residue can be efficiently extracted by acting on the index with a difference operator of Ruijsenaars-Schneider type. By imposing the associativity constraints of S-duality, we are then able to evaluate the index of all generalized quiver theories of type A, for generic values of the three superconformal fugacities, with or without surface defects.Comment: 60 pages, 7 figure

    Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index

    Full text link
    We provide the geometrical meaning of the N=4{\cal N}=4 superconformal index. With this interpretation, the N=4{\cal N}=4 superconformal index can be realized as the partition function on a Scherk-Schwarz deformed background. We apply the localization method in TQFT to compute the deformed partition function since the deformed action can be written as a ÎŽÏ”\delta_\epsilon-exact form. The critical points of the deformed action turn out to be the space of flat connections which are, in fact, zero modes of the gauge field. The one-loop evaluation over the space of flat connections reduces to the matrix integral by which the N=4{\cal N}=4 superconformal index is expressed.Comment: 42+1 pages, 2 figures, JHEP style: v1.2.3 minor corrections, v4 major revision, conclusions essentially unchanged, v5 published versio

    The Strange Quark Mass From Flavor Breaking in Hadronic Tau Decays

    Get PDF
    The strange quark mass is extracted from a finite energy sum rule (FESR) analysis of the flavor-breaking difference of light-light and light-strange quark vector-plus-axial-vector correlators, using spectral functions determined from hadronic tau decay data. We point out problems for existing FESR treatments associated with potentially slow convergence of the perturbative series for the mass-dependent terms in the OPE over certain parts of the FESR contour, and show how to construct alternate weight choices which not only cure this problem, but also (1) considerably improve the convergence of the integrated perturbative series, (2) strongly suppress contributions from the region of s values where the errors on the strange current spectral function are still large and (3) essentially completely remove uncertainties associated with the subtraction of longitudinal contributions to the experimental decay distributions. The result is an extraction of m_s with statistical errors comparable to those associated with the current experimental uncertainties in the determination of the CKM angle, V_{us}. We find m_s(1 GeV)=158.6\pm 18.7\pm 16.3\pm 13.3 MeV (where the first error is statistical, the second due to that on V_{us}, and the third theoretical).Comment: 13 pages, 2 figures; final version to appear in Phys. Rev. D; expanded versions of Figure 2 and Reference 3

    Index computation for 3d Chern-Simons matter theory: test of Seiberg-like duality

    Full text link
    We work out the superconformal index for N=2 supersymmetric Chern-Simons matter theories exhibiting Seiberg-like dualities proposed by Giveon and Kutasov. We consider U(N)/Sp(2N)/O(N)U(N)/Sp(2N)/O(N) gauge theories of QCD type and find the perfect agreements for proposed dual pairs.Comment: References adde

    The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    Full text link
    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue of DCDS-

    Parity Violating Bosonic Loops at Finite Temperature

    Get PDF
    The finite temperature parity-violating contributions to the polarization tensor are computed at one loop in a system without fermions. The system studied is a Maxwell-Chern-Simons-Higgs system in the broken phase, for which the parity-violating terms are well known at zero temperature. At nonzero temperature the static and long-wavelength limits of the parity violating terms have very different structure, and involve non-analytic log terms depending on the various mass scales. At high temperature the boson loop contribution to the Chern-Simons term goes like T in the static limit and like T log T in the long-wavelength limit, in contrast to the fermion loop contribution which behaves like 1/T in the static limit and like log T/T in the long wavelength limit.Comment: 10 pp, 1 fig, revte

    Constraints on chiral operators in N=2 SCFTs

    Get PDF
    Open Access, © The Authors. Article funded by SCOAP3. This article is distributed under the terms of the Creative Commons Attribution License ( CC-BY 4.0 ), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte
    • 

    corecore