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The strange quark mass is extracted from a finite energy sumF&SR analysis of the flavor-breaking
difference of light-light and light-strange quark vector-plus-axial-vector correlators, using spectral functions
determined from hadronie decay data. We point out problems for existing FESR treatments associated with
potentially slow convergence of the perturbative series for the mass-dependent terms in the OPE over certain
parts of the FESR contour, and show how to construct alternate weight choices which not only cure this
problem, but als@l) considerably improve the convergence of the integrated perturbative 4@jistongly
suppress contributions from the regionsofalues where the errors on the strange current spectral function are
still large and(3) essentially completely remove uncertainties associated with the subtraction of longitudinal
contributions to the experimental decay distributions. The result is an extractiog with statistical errors
comparable to those associated with the current experimental uncertainties in the determination of the CKM
angle,V,s. We findmg(1 GeV)=158.6+18.7+16.3+ 13.3 MeV (where the first error is statistical, the second
due to that orV s, and the third theoretical

PACS numbsefs): 12.15.Ff, 11.55.Hx, 12.38:t, 13.35.Dx

I. INTRODUCTION sons which are easily understofd|, the dominant correc-
tions, associated with the contribution to the nominal 88

The light quark massesng, m,+my, are among the spectral functior7,23], are larger than one would naively
least well determined of the fundamental parameters of thexpectt The necessity of determining the IB corrections
standard model and, as such, have been the subject of mutiteoretically thus prevents one from working with a sum rule
recent attention, in both the QCD sum r{ile-18| and lattice  whose spectral side is determined solely by experimental
[19-22 communities. data.

Recent attempts to extranot,+my and mg via sum rule A similar problem exists for the sum rule based on the
analyses of, in the former case, the light quaukll pseudo-  difference of 33 ands vector current correlatofd 7], since
scalar correlatof1] and, in the latter case, the light-strange the portion of the EM hadroproduction cross section associ-
(us) scalar[2,3,5,9 or pseudoscalaf8] correlators suffer  ateq with thess part of the EM spectral function is not an
from the problem that the relevant spectral functions are ”Oéxperimental observable. In RdfL7], it is assumed to be

fully determined experimentally in the region required forgiven by the cross section for the production of the variéus

the analyses. resonances. This approximation, while no doubt a reasonable

Analyses based on vector current correlators involvin . - - . . o
various pieces of the light quark electromagneBid) cur- gone, is exactly valid only if botlil) the Zweig rule is 100%

rent suffer from analogous problems. In the case of Narison'§atisfied and(2) the ¢ resonances are all pure flaves
sum rule based on the difference of the flavor(B®vectoy ~ States. The close cancellatigto the ~15% leve) between
and 88 (hypercharge, or isoscajarcorrelators [4], the the 33 andss spectral integrals again makes the analysis
G-parity-based identification of the 33 and 88 contributionssensitive to even smallfew %) Zweig rule violations
to the EM hadroproduction cross section, which would allow(ZRVs). To illustrate this sensitivity, let us take the deviation
the difference of 33 and 88 spectral functions to be deterfrom ideal mixing in the vector meson sector as a measure of
mined from experimental data, is valid only in the absence ofhe natural scale of ZRVsand consider a scenario in which
isospin breakingIB). The high degree of cancellati¢to the ~ZRVs occur dominantly in the mass matrix and not in the
level of 10—15 % between the 33 and 88 spectral integralsvacuum-to-vector-meson matrix elements of the vector cur-
makes the analysis rather sensitive to the neglect di7|B
This sensitivity is compounded by the fact that a sum rule
determination of the corrections required to remove the 38 i1he central valueny(1 GeV)=176 MeV[17], obtained neglect-
contributions from the experimental data shows that, for reamg |g corrections, is reduced to 146 MeV when one applies the IB
corrections obtained in the sum rule analysis of R28].
2From Ref.[27] one has that the vector meson mixing angle is
*Email address: kambor@physik.unizh.ch either 36° or 39°, depending on whether one uses the linear or
TEmail address: maltman@fewbody.phys.yorku.ca guadratic mass formula.
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rents. The strangéight) quark part of the EM current then from Cauchy’s theorem, defining the spectral function, as
couples only to the stranggdight) part of any given reso- usual, byp=ImII/, the general FESR relation

nance. If the flavor content of a give resonance igrss

+ B(uu+dd)/2 (with a=1 andB smal, the ratio of the
square of the full EM¢ decay constant to that of the decay
constant describing the coupling only to the part of the

EM current is then=1-2p/a. For either the linear or wherew(s) is any function analytic in the region of the
quadratic versions of mixing this ratio is less than 1; includ-contour,C, consisting of the union of the circle of radisg

i_ng ZRV corrections will thus increase thses spectra}l func-  in the complexs plane and the lines above and below the
tion and hence lower the extracted valuenaf. Taking, to ghysical cut, running frons,, to sq.

pen specific, the case that the radius .of the circular part of th As is well known, the ratios ofid andus inclusive had-

Ilf?flitte ig?nrgy sum ruléFESR contour is(1.6 GeVY, we find [onic = decay widths to the- electronic decay width,
, g an identical method of analysis and identica

higher dimensional condensate values to those employed in

Ref. [17] [and including, for completeness, the small IB

isovector contribution to theb(1020) EM decay constant

determined in Ref[23]], the central value omy(1 GeV)

obtained ignoring IB and ZRVEL7] (196 MeV) is lowered

to 177 MeV (108 MeV) for the linear(quadrati¢ cases, re-

spectively. We stress that the point of this exercise is not t

attempt a realistic estimate of ZRV corrections but rather t

point out that, given the scale at which such violations ar ) . .
allows these ratios to be recast into a form appropriate for the

alreadyknownto occur, the uncertainties in the extraction of X \
m. associated with the neglect of ZRVs are large and, more!S€ Of techniques based on the operator product expansion

over, cannot be significantly reduced without a major im-(OPB and perturbative QCD28-33. Letting Jij., 5 be the

provement in our theoretical understanding of the precis&!Sual vector and axial vector currents with flavor conignt

nature and magnitude of ZRVs. and defining the scalai=0,1 parts of the corresponding
In light of the fact that, in each of the analyses above, it iscorrelators by

not possible to work with sum rules for which the hadronic

spectral function is determined entirely by experimental data, . 4y 4% P v +

we will, in this paper, instead construct FESRs based on the Ij d*xe? (0| Tfjv.a(X) Jj:v,a(0))]0)

flavor-breaking difference between the sum of titevector _ ) (1 e (0

and axial vector correlators and the corresponding sutrsof =(—g""q*+q"q") I (0% +a#q"TIY A(0P),

correlators, for which, up te= mf, the spectral function can (3)

be taken from experimental hadronicdecay datd24,16].

The rest of the paper is organized as follows. In Sec. Il weone has

provide a brief review, and discuss the practical difficulties

to be overcome in arriving at a reliable implementation of -~ m2ds s |2

this approach. In Sec. Ill we describe a construction which RQ=12WZSEW|Vij|2f —l|1-—

leads to FESRs which successfully overcome these difficul- 0 m

ties, and in Sec. IV we give numerical details and discuss our

results. %

s —1
JOdSp(s)W(s)=2—ﬂ_ijg| dsti(syw(s) (1)
s sl=sg

th

iTJ.EF[q-*—wrhadrgng(y)]’ @
Il —v.e ve(y)]

R

where (y) indicates additional photons or lepton pairs, and

ij =ud,us labels the flavors of the relevant portion of the
adronic weak current, can be expressed as weighted inte-

egrals over the relevant spectral functions. Equatibnthen

T

( lﬁ%) pi(s) +pi(,-°)(3)]

2
LS
m2>

T

Il. FLAVOR-BREAKING SUM RULES INVOLVING

HADRONIC 7 DECAY DATA ds

_ 2: e
For a general correlatoF](s), with a cut beginning as =6mSgw Vij|“i §;3|=m2m2
=5y, and running along the timelike real axis, one obtains T

1+2 >
m2

T

X , 4

J

S
" Y(s) - 2FH§.0>(3)

T

3In Ref.[17], the agreement of the 33—88 and 33-determina-

tions of mg obtained ignoring IB and ZRVs, respectively, was taken — () o) o) .
as evidence against the size of the IB corrections obtained in Rey_vhere Hii =Hijiv+Hii:A’ Pij (s) are the corresponding

[23]. Note, however, thatl) within errors, the latter result is com- SPectral functionssey,=1.0194 represents the leading elec-
patible with either the IB-corrected or -uncorrected 33—88 determiffoweak correctiong33], and V;; are the usual Cabibbo-
nation and(2) two inverse moment sum rule determinations of the Kobayashi-Maskaw#CKM) matrix elements. Sincen’~3

6th order chiral low-energy constar®, one based on the 33—-88 Ge\?, the second expression in B¢) is amenable to evalu-
[25] and one on thesu-33 correlator differencg26], are brought ~ ation using the OPE. Dividing both the hadronic and OPE
into almost perfect agreement once the IB corrections of R&8].  €xpressions b){Vij|2, and taking the difference of thig
are applied to the former analysis. =ud andus cases, one arrives at a flavor-breaking FESR

093023-2
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1 Another practical problem is the close cancellation be-
Jl) dy[wi . r(Y)Ap* D(s) +wi (y)ApO(s)] tween the rescaleds andud spectral integrals for the sum
rules above, based on the kinematic weights, + andw, .
-1 01 1) !n the analysis of Ref$14,1(j, for example, the cancel'lgtion
=5 |y|=1dy[WL+T(y)AH (s) is to the ~10% level, making the results very sensitive to
both small variations in the input parameters and the sizable
+w, (Y)ATIO)(s)] (5) experimental errors+20—-30 %) on the strange decay num-
ber distribution above th&* region. Two features of the
2 D@17 N (O)_ Q) analysis of Refs[14,16¢ illustrate the former sensitivity.
where y=s/m;, ATIO=IIj] s, Ap®=pid —pis, First, Refs.[14,16 employ |V,J=0.2218*0.0016; cf. the
andw,.r, w, refer to the longitudinal-plus-transverf€) 1498 particle Data GrougPDG98 [27] value 0.2196
r?e?rz;rti(c‘:] ;vii)ér?trstLJr-(ry)];?f— B@?'ltidz”;";" a[rfj ;vo())]/)k: +0.0023. Though compatible within errors, the squares of
—2y(1—y)? resp(LaEEvely The mass—independe&tz(O) the two central values differ by-2%; use of the PDG98
iece of the correlator differenckl1® on the OPE side of Auedecreaseshe flavor-breaking difference,”, by 179%.
Fhe sum rule, Eq(5), of course vanishes b truction. | Since one cannot reliably employ the OPE representation of
L » B4, 2 y construc |02n. " the longitudinal contributions, moreover, the longitudinal
the limit that we neglectn, 4 .andasmu,dms relative t°rT‘s’ spectral contribution(which is dominated, at the-80%
mofeover, theD=2 terms in the OPE representation of level, by theK pole term must be subtracted; the shift in the
1174 a;ij become simply proportional to; . Were the OPE  jnfarred |+ T contribution (used to determinen) is thus
representations of both tHe+ T and longitudinal contribu-  gyen larger(36%). Similarly, use of the PDG98 valugy
tions above to be well converged at scaig, Eq.(5) would  —113.0-1.0 MeV in place of the ALEPH determination,
thus allow a determination af in terms of the difference of fy=111.5+2.5 MeV lowers the inferred. + T contribution
experimental non-strange and strange decay number distribyy p 00 by a further 12%. The combined impact on the central
tions. _ _ . ~ value formq is thus extremely large, though the two central
The perturbative series for the integra@e-2 longitudi-  yajyes are, of course, compatible within tHarge errors
nal contribution in Eq.(5), h(z)wever, turns out not to be guoted in Refs[14,16. The relative size of the residual
convergent at the scalgy=m? [11,12], creating a serious statistical errors as a fraction of the resulting® is, of
problem for the analysis in the absence of an experimentalourse, also significantly increased by such a decrease in
separation of transverse and longitudinal spectral contribuA |t is thus highly desirable to choose, in place of the
tions. This separation is straightforward at lewut experi-  kinematic weights, weights which produce a less close can-
mentally problematic above 1 G&V cellation between thad andus spectral integrals. The easi-
Our inability to treat the OPE representation of the longi-est way to accomplish this goal is to choose weight functions
tudinal contributions in a reliable manner thus createSyhich fall off more rapidly through the region of the excited
difficult-to-quantify uncertainties for any FESR involving strange resonances. This has the happy consequence of also
Significant |Ongitudina| SpeCtraI contributions. EXiSting Suppressing contributions from the region where both the
analyses are included in this category since, for example, therrors on the strange spectral distribution are large and the
central value for the difference of non-strange and strang@ansverse-longitudinal separation is experimentally difficult.

spectral integrals from the analysis of Refft4,16, The final difficulty to be dealt with is theoretical. Suppose
we are able to solve the longitudinal-transverse separation
Rud RUS problem, and thus work with FESRs involving only the
0= —7— — ——=0.394+0.137, (6)  +T part of the flavor breaking difference:
|Vud| |Vus|
(0% =T\ A~ iV Ya )

corresponds th + T, longitudinal and higher dimension con-
densate contributions which are 0.184, 0.155 and 0.055, rérhe leading D=2) mg-dependent terms in the OPE repre-

spectively. sentation ofl1 are[10]
oo —_ 3 Mm@
4In Ref.[11], an attempt was made to circumvent this problem by [I(Q%) ]o-2= 2 Q2
assuming the validity, even in the region of non-convergence, of a
relation between the integrated longitudinal OPE vector and axial 7 5 22
vectorD =2 contributions valid in the region of convergence of the X1+ 3a(Q%)+(19.9333a(Q)"+ - -
OPE representations of both. If true, this would allow the longitu-
dinal strange axial integral to be obtained from the longitudinal 3 mZ(QZ)
strange vector integral. The latter can be obtained using the model =—_— > gkal(Qdk, (8)
strange scalar spectral function of RES]. Using appropriately- 2m Q2 k=0

weighted FESRs for the strange pseudoscalar channel, we have now
been able to test this assumption, and demonstrate that it is, in fadyith a(Q?) = as(Q?)/7 and my(Q?) the running coupling
incorrect. and running strange quark mass, both at sgafe= Q2
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N
TABLE I. OPE convergence of the “contour improved = 2 contributionsgkA[kW“T](mi), as a func-
tion of the contour improved ordek, for the spectral weightagv[‘”(y):(1—y)N+2(1+ 2y), assuming
geometric growth of coefficients beyor@(cug). All entries have been rescaled by the corresponding entry
for k=0.

Weight k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

wl. o+ 1 0.143 —-0.007 —0.145 —0.237 —0.286 —0.294 —-0.272 —-0.233 —0.187 —0.141
Wit 1 0.209 0.100 —0.027 —0.143 —-0.232 —0.287 —0.308 —0.300 —0.272 —0.233
Wt 1 0257 0.187 0.076 —0.048 —0.143 —0.260 —0.324 —0.357 —0.359 —0.339

=—s, in the modified minimal subtractionMS) scheme. A[WE‘”](S) for k=0, ...,10 andsy=m?2, wherew!, -(y)
The ratio ofO(a) and©(a?) coefficients in Eq(8) is rather X 0 . o o
large (8.5), signaling potentially slow convergendevith
ag(m?)=0.334[24], the ratio of theO(a?) andO(a) terms
is 0.90 atu?=m?, and >1 for u? below ~2.2 GeM. In
recent analysefl4—16, this potential problem is brought
under (apparent control using the method of “contour im-
provement”[31]. In this method, the logarithms ifl are
first summedas has already been done in E8).] by choos-
ing the renormalization scale equal®3 at each point on the
circle |s|=sp. The integrals

=w_,r(Y)[1-y]N, N=0,1,2, are the “spectral weights”
employed in the analyses of Refd4-16. The results of
this exercise, rescaled in each case by the correspotding
=0 value, are displayed in Table I. In columns 2—4 we see
the apparently favorable convergence of kwe0,1,2 terms
already discussed. The results of the remaining columns,
however, show that the smallness of the2 term is not the
result of a favorable resummatigwhich would lead also to
improved convergence for the remainder of the sgrimg

N
rather a consequence of the fact thévtvL”](mf) has a zero

as a function ok rather close t&= 2. The magnitudes of the

a(Q) w1 1(y), k=3 terms are such that truncation of the seriekat2
would produce a significant theoretical error, one much
larger in magnitude than the size of the=2 term® The
contour improved analysis employing FESRs based on the
spectral weights thus has potentially significant theoretical
are then evaluated numerically, using the known 4-loopuncertainties.
forms for the running mass and coupling. The OPE side of In light of the problems discussed above for those FESRs
the L+T part of the conventional decay sum rule then based on the spectral weights}, ;, our goal in the next
reduces to a linear combination of thlé[kWL*T](mf), k  section will be to construct alternate weights which lead to
=0,1,2, with the index giving the “contour-improved or- FESRs which bring these problems under control.
der.” Both the convergence and the residual scale depen-
dence of the resulting truncated series are significantly im-
proved by this procedur¢l2,16. Since, relative to an Ill. CONSTRUCTION OF ALTERNATE WEIGHT
expansion in terms ad(u?), for some fixed scal@?, con- FUNCTIONS
tour improvement represents a resummation of the perturba-
tive series, it is possible that this improvement is physically We begin our search for an alternate choice of weight
meaningful. function by attempting to understand the source of the po-

Unfortunately, it turns out that the apparent improvementiential slow convergence of the contour-improved series
is not a general one, but rather the result of an accidentdloted above. The goal will be to find a weight such that,
suppression of th&=2 integral. To see this, let us, for il- €ven were the unknowg,, k=3, to grow geometrically, as
lustrative purposes, imagine that the unknown coefficientsassumed above, the tail of the contour-improved series
ok, for k=3, in Eq. (8) grow geometrically, i.e.,g,  Would be small relative to the known terms, in contrast to the
=(19.9332J19.9332/(7/3) 2, k=35 We then evaluate behavior shown in Table | for the series corresponding to the
spectral weightszvf”. If we succeed in doing so, the reli-
ability of the standard approach, in which the truncation er-
ror is taken to be given by the size of the last known térm

(w47l _
A Sp)= =
k (S0) 2ari Jis|=s,

m(Q?)?
QZ

y=slso, ©)

Note that Refs[14—16 employ a form of theL +T FESR in
which the OPE integral has been partially integrated once in order
to re-express it in terms of the differencelof T ud andus Adler
functions. The contour-improved series for the Adler function ver- 50ne should bear in mind that, were one to work with the Adler
sion differs term by term from that based on the direct correlatorfunction version of the.+T FESR, the assumption of geometric
difference. Though the agreement of the sums of the two versions tgrowth of the coefficients of the Adler function difference is not the
second order is excellent, the reader should bear in mind that theame as the assumption of geometric growth of the coefficients of
relative size of the terms of different order is not the same in thehe correlator difference itself. The potential convergence problem,
two cases. however, may also be demonstrated to exist in the former case.

093023-4
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this casek=2), will, of course, be improved regardless of Ref
the actual behavior of the unknovap. We will then attempt

to simultaneously impose conditions which reduce the im- !
pact of the experimental errors.

To study the source of the slow convergence of the .|
contour-improved series, it is useful to consider the behavior
of the factorf,(Q?)=m(Q?)?a(Q?¥g,, appearing in the
integrand ofg, A" (s,), on the contouts|=s,. Let w(y), 96
y=sl/sg, be any analytic function real on the reséxis, and
Q2= —syexpi¢) (¢=0,7 thus correspond to timelike and 04l
spacelike points, respectivelyOne then has

02

Wiy = [7 2 ; i
gkAk " (So) - do Re[f (Q)w(expie))}. (10)
0

=)
1

The behavior of Ref() and Im(f,) as a function ofe, for 0 ' 1 ' 2 ' 3
sosz and k=0, ...,10, is shown in Fig. 1. We observe (0]

that both Ref,) and Im({,) have zeros on the circlés|

=m?, and that these zeros move with the ordeMoreover, Im f,

while Re(f,) (slowly) decreases with increasirlg for all
anglese, the magnitude of Imf() is sizable in the region % ' ' ' ' '

¢=/2 even fork=5. This slow convergence in the back- . ]
wards(spacelike direction is the origin of the slow conver- ¢4
gence of thek=3 tails of the integrated series shown in
Table 1, since the factor (2y)N*2 entering the weight
w}', 1 has maximum modulus at the spacelike point on the®*[”
contour, and is more and more sharply peaked in the back
ward direction asN increases. In addition, the behavior of o,
Re(f,) and Im(f,) happens to be just such that, combined
with the changes of sign of the real and imaginary parts of
w)', 7, there is a very strong cancellation in the integral over *'[”
¢ (particularly so for the cas®=0). This strong cancella-

tion is the origin of the “accidental” suppression of the
magnitude of thek=2 term. As we have already seen in )
Table 1, it is potentially dangerous to use weights for which 1 2 3
the integraIsA[kW](so) are small for a particulak (or for a ¢

small number of values df) only due to such cancellations

Higher order contributions can then easily be large again, FIG. 1. The real and imaginary parts &f, k=0, ...,10, at
thereby spoiling the seemingly good convergence of the firsscalem?, wherek labels the power ofrs. Heref, is defined ex-
few terms of the contour-improved series. plicitly in the text.

The behavior of the Ré() and Im(f,) displayed in Fig. 1
allows one not only to understand the origin of the potential
convergence problem but also to construct alternate su
rules which avoid it. From Fig. 1 it is evident that conver-

gence can be improved by avoiding weights which are larg arge contributions from Inf), k>1 (see Fig. 1 A conve-

in the spacelike direction. The results of Rgg4] also indi- nient and effective choice is to take Img) to have a Gauss-

cate that, for the FESR framework to be reliable at scales . . .
0 . . . ian form on the contour. Choosing the width of the Gaussian
~mZ, it is necessary for the weight function to have a zero

ats=s, (y=1)7 to be 10° and the center to ke= ¢,, good convergence of

_ i ; : .
We have found two approaches useful for implementin the k=3 tail of the integrated series can be obtained for any

°< ¢,=<90°. i i -
these constraints. The first involves the use of polynomialggm e(gpu sﬁ% pl’ﬁ/%r;r::ﬁg:lsybtfhgggrggflzlgls can be well repre

with “shepherd” zeros, i.e., zeros either on, or near, the

regions of the contour one wishes to suppress. The second
Mvolves the construction of weightsy,, with Im(w,)
eaked on the contour at angless 7/2, thereby avoiding

K
oY) =23 @y (19)
=
’Such a zero suppresses contributions from the OPE representa-
tion in the region near the timelike real axis where, at scaless ~ The coefficients a; are determined, upon normalizing
and below, data show that it breaks dof@d]. Im(wp) such thatw,(0)=1, by the Fourier integrals

093023-5
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TABLE IIl. OPE convergence of the “contour improvedy=2 contributionsg,AL"!(m?), as a function

of the contour improved ordek, for the weights,w;y, Wiy, andw,y, assuming geometric growth of
coefficients beyonut)(ag). All entries have been rescaled by the corresponding entrig$db.

Weight k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Woo 1 0262 0.213 0.143 0.073 0.018-0.017 —-0.033 —0.034 —-0.027 —0.016
Wig 1 0.232 0.165 0.092 0.032-0.008 —0.030 —0.038 —0.038 —0.035 -—-0.032
Wio 1 0.248 0.193 0.125 0.064 0.019-0.009 —-0.023 —-0.026 —0.024 -0.020

2 (m . spacelike regions. An alternate family of weights still having
ag=1, akI;f de Imwy(e)]sin(ke), k=1,...K. a fourth order zero ay=1, but with the remaining zeros
0 moved off the contour and at a distancrom the origin, is

(12)
To summarize, given the problems discussed above with W(r, cosfy, Cost,,y)
those FESRs involving the spectral weighmﬁ‘”(y), we ) )
would like to find, if possible, an alternate weight choice, =[1-y]4 1+ y 1+2X00301+ Yy
w(y): r r r2

(1) such thatw(y) is strongly suppressed in the region
aboves~1 Ge\?, in order to(a) reduce the degree of can-
cellation between thed andus spectral integralgp) reduce
the impact of the large experimental errors in trgespectral

distribution above th&* region, and(c) minimize the role (6, and 6, give the angular positions of the pairs of off-
of the longitudinal subtraction which must, at present, becontour complex conjugate zeros corresponding to the last
performed theoretically, and two factors, with respect to the spacelike directiofihe

(2) such thatw(y) emphasizes those regions of the con-choice ¢, cosé;,cos6,)=(1.2,0.5,0.1) produces a second
tour|s|=s, for which the convergence of t2=2 series is  solution to the constraints above, one whose biggest coeffi-

favorable. - _ cient isa; = —4/3. We denote this solution by
It is, of course, not priori obvious that there exist(y)

having the desired properties. We have, however, succeeded - -
in constructing several polynomial weights which&®ince, Wio(y)=w(1.2,0.5,0.1y). (15)
as we will see below, the resulting weights do not contain

wi+1(y) as a factor, the approach is less inclusive than the |n the approach based on weights which have imaginary
analysis employingv, ,+(y) [12,16, but it has the advan- parts with a Gaussian profile on the contour, we choose a
tage of being theoretically cleaner. basis of such weights having different centeps, As noted
The strategy involving shepherd zeros can be impleapove, as long as all the,, lie in the interval 20% ¢,
mented with the zeros either on or off the contour. The ﬁrSTg 90°, all of the Corresponding integratajzz perturbative
weight we have constructed satisfying the criteria above hageries will be under control. We then form linear combina-

2

1+ ZXcosaer y
r r2

X (14

all zeros on the contour, and is given by tions of these weights having differedt, in such a way as
to construct a new weight which not only retains this good
Wio(Y)=[1-y]1+y] 1+y2][1+y+Yy?] convergence, but at the same time has a zero of sufficiently
- ) 5 8 9. .10 high order aty=1 to strongly suppress contributions to the
=1l-y-y +2y> -y oy ity (13 spectral integral from the regiop>0.5. The weight of this

type which most successfully satisfies the criteria discussed
The absence of)(y®,y*) terms, which suppress&=8,10 above has a rapid highfalloff produced by a 6th order zero
contributions, is an additional positive feature of this weight.aty=1, a largest coefficiers,=2.087, and is given by
The fourth order zero at=1 and second order zero yat

—1 provide the desired suppressions of the timelike andwzo(y)=(1—y)6[1+4.2451y+9.4683/2+14.41553

+16.4589*+ 14.6598°+10.28185+5.556 "
8An important further restriction results from the observation that,

in the FESR framework, higher dimension contributions are sup- +2.115%%+0.352¢/°— 0.2065°— 0.2154/*1
pressed only by inverse powers &f; in order to avoid generating
potentially large, and unknown, higher dimension contributions, —0.104@/*?—0.0304¢ - 0.00454]. (16)

therefore, the coefficients of the polynomials we construct should
all be comparable in magnitude to the leading coefficiagt: 1. . .
We have chosen to implement this constraint by keeping all coef- 1he (vastly) improved convergence of the=3 tail of the

ficients less than-2 in magnitude. integratedD =2 series for the weights/;y, Wy andwayg is
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displayed in Table Il. The entries, as in Table I, have beerRef.[35].1° The input value oing required for this analysis
rescaled by the correspondikg=0 value, and hence corre- should, in principle, be determined iteratively. We have,
spond to the ratiogg, ALY (m?)/AMY . The results also show however, employed as input the valuerof obtained from
that an estimate of the truncation error given by the magnithe strange scalar analysis of R¢@], my(1 GeV)=159
tainly a very conservative one. We will demonstrate, in the'esult forms. Moreover, for the steeply falling weights em-
next section, that the suppression of the higtegion of the  Ployed in our analysis, the sum of the highv andA longi-
spectrum produced by the new weights is also sufficient t(_;udlnal subtractions is at th€ 0.1% level of theus spectral

significantly reduce the impact of the experimental errors, INtégral and, hence, at the1% level in theud-us differ-
ence. As such, even were our evaluation to be in error by

100%, the effect onmg would be completely negligible on
the scale of the other errors present in the analysis.

On the OPE side, we retain contributions up to and in-
cludingD=8. The leadingd =2 term was given above.

In performing the numerical analysis of the FESRs con- The D=4 contribution is[30,10
structed above, we employ the ALEPH data for the non-
strange and strange number distributibasd PDG98 values 5
for fx, f,, |Vud and|V,s. As noted above, the weights 2 _ T\
have been (|:hos|en in|suc|h a way that, although theoretic!{P(Q )](D=4)——4 (m{Ihy—=1y)
input is required in order to subtract the longitudinal contri-
butions to the experimental number distributions, and hence 4 2 7
obtain thel + T spectral functions, the effect of this subtrac- + mms(Q ) a(Q?) 12
tion on the final value ofng is negligible. We will quantify
this statement below. Once thet+ T spectral function has

been dgtermined, itis a st.raightforward mat'ter to evaluatguherel, is the usual renormalization grouRG) invariant
the weightedL + T spectral integrals. The choice of steeply modification of the non-normal-order strange quark conden-

falling weights ensures that the strange spectral integrals ate[36], m, is the average of the light, d masses andﬁ)
dominated by theK and K* contributions, for which the s the jight (u,d) condensate. We use the quark mass ratios
experimental errors are much smaller than those of the rest @fatermined from the chiral perturbatiéBhPT) analyses of

the strange number distribution. This plays a major role in . TN §2.2
reducing the impact of experimental errors on the final ex—Ref' [37), the GMO relation Zn/(l1)=—fm; , and the

tracted value ofn,. To get a realistic determination of these "ange of values 0 (ss)/(11)<1 [2,3] for the ratio of con-

errors it is important to separate correlated and uncorrelategensates. The contour integration are performed as described

errors and also to take into account the strong correlation8€l0w- o .

between the spectral integrals involving different weights. ~ For theD=6 contribution we employ a rescaled version
The nature of the longitudinal subtraction differs signifi- ©f the vacuum saturation approximati¢gifSA). From the

cantly in the lows and highs (~1 Ge\) regions. For lowns, ~ results of Ref[30], one finds

the = andK pole subtractions are experimentally unambigu-

ous. For highs (the resonance regipnthe longitudinal con-

tributions are proportional tongs*m,)?, (my*my)?, for °The corresponding procedure works very well in the isovector
us, ud, respectively, and hence dominated by tigecontri-  vector channel, where the results can be checked against the well-
butions. The longitudinalis vector contribution is inferred known experimental spectral functig85]. A similar statement is
from the strange scalar spectral function of Ré&f]. This  true even in channels with strongly attractive interactions near
procedure is consistent provided the valuenof resulting  threshold, for which the spectral function will be poorly represented
from the present analysis is compatible with that from thenear thresholdoy the tail of a Breit-Wigner resonance form with
strange scalar chann@], which it turns out to be. The lon- “conventional” s-dependent width. For example, using the value of
gitudinal us axial vector contribution is similarly inferred Ms obtained from the strange scalar channel analysis as input and
from the spectral function of the strange pseudoscalar charedoing the strange scalar channel analysis, using now a sum-of-
nel. The latter is obtained by fixing the excited resonancéésonances spectral ansatz in place of the more realistic ansatz of
decay constants of a sum-of-resonances spectral ansdtsf: [5], one finds that the ansatz of RE$] is well reproduced in

through matching of the hadronic and OPE sides of a familyih€ region of the dominari(s (1430) peak. One can also use this
of “pinch-weighted” FESRs, in analogy to the analysis of approach to check the self-consistency between the assumed longi-
' tudinal contributions and the outpnt value in kinematic-weight-

based analysis of Refgl4,16]. It turns out that the higls-longitu-
dinal contributions assumed are more than a factor of 2 smaller than
The 1998 tabulation of the nonstrange data receives a small ovewould be expected based on the extracted valuengf If one
all normalization correction as a result of the shiftRH® between  employs the PDG98 values f¢Y,{ and fy, as discussed above,
the preliminary 1998 and final 1999 analyses. We thank Shaomihowever, the assumed longitudinal contribution becomes compat-
Chen for bringing this point to our attention. ible within the errors assigned to it in R¢fl4,16].

IV. NUMERICAL ANALYSIS AND RESULTS

13
1-a(Q?) - ga(Qz)z)

: 17
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TABLE IIl. The extracted value ofny(1 GeV¥) in MeV as a  function ofs,, the extracted values ofiy(1 Ge\?) obtained
function of sy for the weightw,q having noD =8,10 contributions. from thew,, sum rule, analyzed neglecting contributions of
dimension 12 and higher. Central values have been used for
all input on the OPE side and for the experimental spectral
data. For the analysis to be self-consistent, the extracted
value ofm, should be independent sf. This will be true for
64 sp sufficiently large that thé =12 contributions are negli-

2 _ 0P o 2 gible. As s; is decreased, the extracted, values should
[11(QY]0-6)= 81Q° (11" =(s9)°], (18 eventually deviate from a constant, signaling the growth of
the higher dimension terms. From the table we see that the
where p represents a multiplicative rescaling of the VSA range 2.75 Ge%<s,<3.15 GeV provides an extremely
estimate. The analogous rescaling has been determined e@pod window of stability. In view of the falloff begining
pirically for the isovector vector channel and the isospin-aroundsy~2.55 GeV, we will work in the rangesy=2.55
breaking vector 38 correlator, and found to & in both GeV? in the discussions which follow. It is worth stressing
cases38,23. For the weights employed in our analysis, it that the central values obtained fram, andw;, sum rules,
turns out that the integrated =6 contributions are very though having slightly larger theoretical errors, are nonethe-
small. We are, therefore, able to employ the very conservaess completely consistent with those above: in the window
tive estimatep=5+5 for the degree of VSA violation with- 255 Ge\f<s,=<3.15 Ge\#, one finds that the range of so-
out significantly affecting the overall theoretical error. The |utions for m(1 Ge\?) lies between 156 and 161 MeV for
combinationpag(qq)? in Eq. (18) is to be understood as an w.,,, 158 and 164 MeV fow,,, and, as we saw already in
effective RG-invariant combination for the evaluation of the Table 11, 159 and 163 MeV fow,,. In contrast, thew, , 1
OPE contour integrals. sum rule, for which the longitudinal subtraction is important,
Finally, for theD =8 contribution, we assume and theD =2 convergence is not well under control, yields a
range between 161 and 18ith, moreover, inconsistent
) 8 solutions forCg).
[I(Q )](D:8):&- (19) From the point of view of the impact of the errors present
in existing experimental data, the theoretically favoreg

For wy, this term does not contribute to the integrated OPE;Welght is, unfortunately, no longer the favored one. The rea-

~ . . . son is that, although the impact of the errors in the hégh-
for w,y and wyg, the value of the effective RG-invariant

S i ; region of theus spectrum has been strongly suppressed by
crcl)ndenlsat_e combinatiog, is to be determined as part of yhe \a5iq falloff of the weights employed, tiel-us cancel-
the analysis.

As noted above, the OPE contour integratiéor all D) lation is still rather cIosﬂe.g., atsp=m?, to the level of
are performed using the contour improvement prescription8-0% forwio, 6.8% forwy, and 8.6% forw,, to be com-
Four-loop versions of the running mass and coupling arared with 3.7%, 6.5% and 9.3% for the, 7, N=0,1,2).
employed. To be specific, we have solved analytically for theAlthough the dominant errorgthose from thek* region of
running mass and coupling using the 4-loop truncated verthe us spectrum are reasonably small, they are still large
sions of theB [39] and y [40] functions, with the value €nough that theelative size of the residual statistical error
determined in nonstrange hadronie decays, as(mf) grows very rapidly with th(za increase in the degree of cancel-
—0.334+0.022[24], as input. Following conventional prac- lation. Thus, e.g., as=m?, the statistical error represents
tice, we take the error associated with the truncation of thé2%, 36%, 26%, 77%, 38% and 23% of the-us spectral
perturbative series for the Wilson coefficient of tbe=2 difference for thew,q, Wyg, Wy, WE+-|-, Wﬁ” and WE+T
term at©O(a®) to be equal to the value of the lggP(a?)] sum rules, respectivelf?. The present experimental situation
contribution retained. In light of the discussion above weis, therefore, such that the errors in our final resultnfrare
consider this to represent an extremely conservative estminimized by working withw,g, rather thanw,g.
mate. Working with thew,q sum rule in the window specified

From the point of view of uncertainties on the OPE side,above we find, for our best fit,
the wyo sum rule is favored over the;, andw,, sum rules
for three reasong?) it has noD =28,10 contributions(2) it m(1 GeV?)=158.6+18.7+16.3-13.3 MeV, (20)
has the smallest truncation error, af®l it has the smallest
errors associated with uncertainties in the input values of theyhich is equivalent to
D=4 andD=6 condensate’.In Table Ill we display, as a

sy (GeV?) 235 255 275 295 315
my(l Ge\®) (MeV) 153.2 159.0 162.2 163.4 163.2

12Because of the high degree of cancellation, redusipgvhich
HCombining the errors associated with truncation, the condensat@creases the degree of suppression of(#fieady smajlhigh-s us
input values, and the uncertainty a(m?) in quadrature, the re-  contributions, still has a non-trivial effect; e.g., the relative statisti-
sulting errors irm are 7.7%, 8.2% and 8.4% far,y, W;oandw,g, cal error for thew,o sum rule is reduced from 26% to 19% when
respectively. is lowered frommi to 2.55 GeV.
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0.008 1 - RN KRS N S E— the OPE and spectral integral sides of thg sum rule cor-

4 L responding to the fit above; the agreement in the previously
0007 L established stability windowsy>2.55 GeV, is obviously

4 L excellent. The divergence of the OPE and spectral integral
0.006 - L curves belows,~2.55 GeVf is precisely what one would

expect based on the observation above that, fomthesum
rule, D>10 contributions, not included in the truncated OPE
representation, begin to become important in this region.
The result of Eqs(20) and(21) is in good agreement with
the strange scalar channel results of R€fg.and[9], the
strange pseudoscalar channel result of R&f. and the re-
cent hadronicr decay analysis of Ref15], but, we believe,
has signficantly reduced theoretical and experimental errors.
In particular, the statistical error has, at this point, been re-
duced almost to the level of that associated with the uncer-

0.005 — —

0.004 — —
0.003 —

0.002 — —

OPE/spectral integrals (GeV ?)

o001 T tainty in| V4.
T i Improvements in the accuracy of the experimenial
0.000 I L spectral data, in particular in tH€* region, could lead to a

significant improvement in the size of the statistical error.
) Such an improvement should be possible using BaBar data
so (GeV®) [41]. Reduced uncertainties in our knowledge \df would

ailso be helpful. On the theoretical side, while significant im-
(0] .

provements in the accuracy of the spectral data would allow

<m?. The solid line is the OPE side, using the valuesiglandCg _Oni to r:nove _frolm thevy to thﬁwlo Sulrg rule,l t?e de(r:]r_eashe_ft
obtained in the fitting procedure described in the text. The dashelf! the theoretical uncertainty that WO[_J result from this shi
line is the hadronic side, obtained using the ALEPH spectral datd/ould be only~1.3 MeV. Far more likely to lead to a sig-

from which the longitudinal component has been subtracted as ddlificant improvement in the size of the theoretical error
scribed in the text. would be a computation of thé(a®) coefficient in theD

=2 contribution to the flavor-breaking correlator difference,
IT.

1.95 2.15 2.35 2.55 2.75 2.95 3.15

FIG. 2. The agreement between the OPE and hadronic sides
the FESR corresponding to the weighty(y) for 1.95 GeVf<s,

my(4 GeV¥)=115.1+13.6+11.8+9.7 MeV, (21)
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