2,280 research outputs found

    Threshold functions and Poisson convergence for systems of equations in random sets

    Get PDF
    We present a unified framework to study threshold functions for the existence of solutions to linear systems of equations in random sets which includes arithmetic progressions, sum-free sets, Bh[g]B_{h}[g]-sets and Hilbert cubes. In particular, we show that there exists a threshold function for the property "A\mathcal{A} contains a non-trivial solution of M⋅x=0M\cdot\textbf{x}=\textbf{0}", where A\mathcal{A} is a random set and each of its elements is chosen independently with the same probability from the interval of integers {1,…,n}\{1,\dots,n\}. Our study contains a formal definition of trivial solutions for any combinatorial structure, extending a previous definition by Ruzsa when dealing with a single equation. Furthermore, we study the behaviour of the distribution of the number of non-trivial solutions at the threshold scale. We show that it converges to a Poisson distribution whose parameter depends on the volumes of certain convex polytopes arising from the linear system under study as well as the symmetry inherent in the structures, which we formally define and characterize.Comment: New version with minor corrections and changes in notation. 24 Page

    A Note on sparse supersaturation and extremal results for linear homogeneous systems

    Get PDF
    We study the thresholds for the property of containing a solution to a linear homogeneous system in random sets. We expand a previous sparse Sz\'emeredi-type result of Schacht to the broadest class of matrices possible. We also provide a shorter proof of a sparse Rado result of Friedgut, R\Postprint (published version

    Additive Volume of Sets Contained in Few Arithmetic Progressions

    Get PDF
    A conjecture of Freiman gives an exact formula for the largest volume of a finite set AA of integers with given cardinality k=∣A∣k = |A| and doubling T=∣2A∣T = |2A|. The formula is known to hold when T≤3k−4T \le 3k-4, for some small range over 3k−43k-4 and for families of structured sets called chains. In this paper we extend the formula to sets of every dimension and prove it for sets composed of three segments, giving structural results for the extremal case. A weaker extension to sets composed of a bounded number of segments is also discussed.Comment: 16 page

    Additive structures and randomness in combinatorics

    Get PDF
    Arithmetic Combinatorics, Combinatorial Number Theory, Structural Additive Theory and Additive Number Theory are just some of the terms used to describe the vast field that sits at the intersection of Number Theory and Combinatorics and which will be the focus of this thesis. Its contents are divided into two main parts, each containing several thematically related results. The first part deals with the question under what circumstances solutions to arbitrary linear systems of equations usually occur in combinatorial structures..The properties we will be interested in studying in this part relate to the solutions to linear systems of equations. A first question one might ask concerns the point at which sets of a given size will typically contain a solution. We will establish a threshold and also study the distribution of the number of solutions at that threshold, showing that it converges to a Poisson distribution in certain cases. Next, Van der Waerden’s Theorem, stating that every finite coloring of the integers contains monochromatic arithmetic progression of arbitrary length, is by some considered to be the first result in Ramsey Theory. Rado generalized van der Waerden’s result by characterizing those linear systems whose solutions satisfy a similar property and Szemerédi strengthened it to a statement concerning density rather than colorings. We will turn our attention towards versions of Rado’s and Szemerédi’s Theorem in random sets, extending previous work of Friedgut, Rödl, Rucin´ski and Schacht in the case of the former and of Conlon, Gowers and Schacht for the latter to include a larger variety of systems and solutions. Lastly, Chvátal and Erdo¿s suggested studying Maker-Breaker games. These games have deep connections to the theory of random structures and we will build on work of Bednarska and Luczak to establish the threshold for how much a large variety of games need to be biased in favor of the second player. These include games in which the first player wants to occupy a solution to some given linear system, generalizing the van der Waerden games introduced by Beck. The second part deals with the extremal behavior of sets with interesting additive properties. In particular, we will be interested in bounds or structural descriptions for sets exhibiting some restrictions with regards to either their representation function or their sumset. First, we will consider Sidon sets, that is sets of integers with pairwise unique differences. We will study a generalization of Sidon sets proposed very recently by Kohayakawa, Lee, Moreira and Rödl, where the pairwise differences are not just distinct, but in fact far apart by a certain measure. We will obtain strong lower bounds for such infinite sets using an approach of Cilleruelo. As a consequence of these bounds, we will also obtain the best current lower bound for Sidon sets in randomly generated infinite sets of integers of high density. Next, one of the central results at the intersection of Combinatorics and Number Theory is the Freiman–Ruzsa Theorem stating that any finite set of integers of given doubling can be efficiently covered by a generalized arithmetic progression. In the case of particularly small doubling, more precise structural descriptions exist. We will first study results going beyond Freiman’s well-known 3k–4 Theorem in the integers. We will then see an application of these results to sets of small doubling in finite cyclic groups. Lastly, we will turn our attention towards sets with near-constant representation functions. Erdo¿s and Fuchs established that representation functions of arbitrary sets of integers cannot be too close to being constant. We will first extend the result of Erdo¿s and Fuchs to ordered representation functions. We will then address a related question of Sárközy and Sós regarding weighted representation function.La combinatòria aritmètica, la teoria combinatòria dels nombres, la teoria additiva estructural i la teoria additiva de nombres són alguns dels termes que es fan servir per descriure una branca extensa i activa que es troba en la intersecció de la teoria de nombres i de la combinatòria, i que serà el motiu d'aquesta tesi doctoral. La primera part tracta la qüestió de sota quines circumstàncies es solen produir solucions a sistemes lineals d’equacions arbitràries en estructures additives. Una primera pregunta que s'estudia es refereix al punt en que conjunts d’una mida determinada contindran normalment una solució. Establirem un llindar i estudiarem també la distribució del nombre de solucions en aquest llindar, tot demostrant que en certs casos aquesta distribució convergeix a una distribució de Poisson. El següent tema de la tesis es relaciona amb el teorema de Van der Waerden, que afirma que cada coloració finita dels nombres enters conté una progressió aritmètica monocromàtica de longitud arbitrària. Aquest es considera el primer resultat en la teoria de Ramsey. Rado va generalitzar el resultat de van der Waerden tot caracteritzant en aquells sistemes lineals les solucions de les quals satisfan una propietat similar i Szemerédi la va reforçar amb una versió de densitat del resultat. Centrarem la nostra atenció cap a versions del teorema de Rado i Szemerédi en conjunts aleatoris, ampliant els treballs anteriors de Friedgut, Rödl, Rucinski i Schacht i de Conlon, Gowers i Schacht. Per últim, Chvátal i Erdos van suggerir estudiar estudiar jocs posicionals del tipus Maker-Breaker. Aquests jocs tenen una connexió profunda amb la teoria de les estructures aleatòries i ens basarem en el treball de Bednarska i Luczak per establir el llindar de la quantitat que necessitem per analitzar una gran varietat de jocs en favor del segon jugador. S'inclouen jocs en què el primer jugador vol ocupar una solució d'un sistema lineal d'equacions donat, generalitzant els jocs de van der Waerden introduïts per Beck. La segona part de la tesis tracta sobre el comportament extrem dels conjunts amb propietats additives interessants. Primer, considerarem els conjunts de Sidon, és a dir, conjunts d’enters amb diferències úniques quan es consideren parelles d'elements. Estudiarem una generalització dels conjunts de Sidons proposats recentment per Kohayakawa, Lee, Moreira i Rödl, en que les diferències entre parelles no són només diferents, sinó que, en realitat, estan allunyades una certa proporció en relació a l'element més gran. Obtindrem límits més baixos per a conjunts infinits que els obtinguts pels anteriors autors tot usant una construcció de conjunts de Sidon infinits deguda a Cilleruelo. Com a conseqüència d'aquests límits, obtindrem també el millor límit inferior actual per als conjunts de Sidon en conjunts infinits generats aleatòriament de nombres enters d'alta densitat. A continuació, un dels resultats centrals a la intersecció de la combinatòria i la teoria dels nombres és el teorema de Freiman-Ruzsa, que afirma que el conjunt suma d'un conjunt finit d’enters donats pot ser cobert de manera eficient per una progressió aritmètica generalitzada. En el cas de que el conjunt suma sigui de mida petita, existeixen descripcions estructurals més precises. Primer estudiarem els resultats que van més enllà del conegut teorema de Freiman 3k-4 en els enters. Llavors veurem una aplicació d’aquests resultats a conjunts de dobles petits en grups cíclics finits. Finalment, dirigirem l’atenció cap a conjunts amb funcions de representació gairebé constants. Erdos i Fuchs van establir que les funcions de representació de conjunts arbitraris d’enters no poden estar massa a prop de ser constants. Primer estendrem el resultat d’Erdos i Fuchs a funcions de representació ordenades. A continuació, abordarem una pregunta relacionada de Sárközy i Sós sobre funció de representació ponderada

    On the optimality of the uniform random strategy

    Full text link
    The concept of biased Maker-Breaker games, introduced by Chv\'atal and Erd{\H o}s, is a central topic in the field of positional games, with deep connections to the theory of random structures. For any given hypergraph H{\cal H} the main questions is to determine the smallest bias q(H)q({\cal H}) that allows Breaker to force that Maker ends up with an independent set of H{\cal H}. Here we prove matching general winning criteria for Maker and Breaker when the game hypergraph satisfies a couple of natural `container-type' regularity conditions about the degree of subsets of its vertices. This will enable us to derive a hypergraph generalization of the HH-building games, studied for graphs by Bednarska and {\L}uczak. Furthermore, we investigate the biased version of generalizations of the van der Waerden games introduced by Beck. We refer to these generalizations as Rado games and determine their threshold bias up to constant factors by applying our general criteria. We find it quite remarkable that a purely game theoretic deterministic approach provides the right order of magnitude for such a wide variety of hypergraphs, when the generalizations to hypergraphs in the analogous setup of sparse random discrete structures are usually quite challenging.Comment: 26 page

    The Rado Multiplicity Problem in Vector Spaces over Finite Fields

    Get PDF
    We study an analogue of the Ramsey multiplicity problem for additive structures, establishing the minimum number of monochromatic 33-APs in 33-colorings of F3n\mathbb{F}_3^n and obtaining the first non-trivial lower bound for the minimum number of monochromatic 44-APs in 22-colorings of F5n\mathbb{F}_5^n. The former parallels results by Cumings et al. \cite{CummingsEtAl_2013} in extremal graph theory and the latter improves upon results of Saad and Wolf \cite{SaadWolf_2017}. Lower bounds are notably obtained by extending the flag algebra calculus of Razborov \cite{razborov2007flag}

    Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging

    Full text link
    Neural networks can be significantly compressed by pruning, leading to sparse models requiring considerably less storage and floating-point operations while maintaining predictive performance. Model soups (Wortsman et al., 2022) improve generalization and out-of-distribution performance by averaging the parameters of multiple models into a single one without increased inference time. However, identifying models in the same loss basin to leverage both sparsity and parameter averaging is challenging, as averaging arbitrary sparse models reduces the overall sparsity due to differing sparse connectivities. In this work, we address these challenges by demonstrating that exploring a single retraining phase of Iterative Magnitude Pruning (IMP) with varying hyperparameter configurations, such as batch ordering or weight decay, produces models that are suitable for averaging and share the same sparse connectivity by design. Averaging these models significantly enhances generalization performance compared to their individual components. Building on this idea, we introduce Sparse Model Soups (SMS), a novel method for merging sparse models by initiating each prune-retrain cycle with the averaged model of the previous phase. SMS maintains sparsity, exploits sparse network benefits being modular and fully parallelizable, and substantially improves IMP's performance. Additionally, we demonstrate that SMS can be adapted to enhance the performance of state-of-the-art pruning during training approaches.Comment: 9 pages, 5 pages references, 7 pages appendi
    • …
    corecore