7 research outputs found
Le projet personnel des internes de Médecine Générale de Marseille aprÚs la fin du 3Úme cycle
Introduction : la dĂ©mographie mĂ©dicale et lâaccessibilitĂ© aux soins font parties des grandes lignes directrices des gouvernements depuis quelques annĂ©es. Lâaccent est mis sur le cursus universitaire qui est, de par sa sĂ©lection trĂšs stricte, souvent pointĂ© du doigt en regard dâune demande mĂ©dicale croissante. Le mĂ©decin gĂ©nĂ©raliste se voit attribuĂ© un rĂŽle central dans la coordination des soins de la population. RĂŽle quâil a de plus en plus de mal Ă jouer du fait de lâaugmentation des zones de dĂ©serts mĂ©dicaux. La profession mĂ©dicale est en proie Ă une transformation : fĂ©minisation des effectifs, modifications de la maniĂšre dâexercer, contrĂŽle du temps de travail et importance croissante de la sphĂšre privĂ©e/personnelle. MĂ©thode : Ă©tude observationnelle descriptive transversale menĂ©e Ă travers trois promotions successives dâanciens internes de mĂ©decine gĂ©nĂ©rale de Marseille sur une pĂ©riode de juillet Ă septembre 2020. Le questionnaire diffusĂ© sur les rĂ©seaux sociaux portait sur diffĂ©rentes caractĂ©ristiques socio dĂ©mographiques : situations personnelles, zone dâexercice, formations complĂ©mentaires, soutenance de thĂšse, Ă©volution de leurs activitĂ©s et de leurs projets professionnels. RĂ©sultats et discussion : 204 internes ont rĂ©pondu au questionnaire (31%) dont 63% de femmes. 82% exercent en rĂ©gion PACA/Corse (hors Alpes Maritimes) ; parmi eux 53% Ă©taient dâanciens externes de la facultĂ© dâAix-Marseille. 57% des participants, dont 58% des femmes, ont fait au moins une formation complĂ©mentaire. Leur rĂ©partition dans la rĂ©gion suit celle de la population. A un an post internat, ils sont 47% Ă faire des remplacements, 21% Ă avoir une activitĂ© hospitaliĂšre, 16% Ă avoir une activitĂ© mixte, 10% Ă ĂȘtre installĂ©, 4% Ă avoir un salariat hors hospitalier et 2% Ă nâavoir aucune activitĂ©. Pour lâactivitĂ© libĂ©rale : 65% exercent au sein dâun regroupement de mĂ©decin, 25% dans un centre de santĂ© pluri disciplinaire et 10% seul dans un cabinet. Pour lâactivitĂ© hospitaliĂšre : 50% occupent un poste dans un service dâurgence, 35% dans un service hospitalier et 15% dans un SSR. Concernant leurs carriĂšres : 54% des jeunes mĂ©decins jugent avoir manquĂ© dâinformation durant leur internat mais cela nâimpacte pas leur satisfaction personnelle
Minimal datasets for testing DIMet
<p>Two datasets to test the DIMet tool, which is available <a href="https://github.com/cbib/DIMet/">here</a>, the tool documentation is accessible in the <a href="https://github.com/cbib/DIMet/wiki/">DIMet wiki page</a>, and also in Galaxy.</p>
<p>Depending on the user case, download one .zip file:</p>
<ul>
<li>Users of the <strong>Galaxy </strong>version of DIMet: download the file 'minimal_examples_DIMet_Galaxy.zip', decompress it and use the files as indicated in the documentation accompanying each 'dimet_' module in the Galaxy site.</li>
<li>Users of the <strong>command line</strong> version of DIMet: download the file 'minimal_examples_DIMet_command_line.zip', decompress it and follow the instructions in the <a href="https://github.com/cbib/DIMet/wiki/">DIMet wiki page</a>.</li>
</ul>
Datasets of the DIMet manuscript
<p>Datasets for reproducing the results of the manuscript "<em>DIMet : An open-source tool for Differential analysis of targeted Isotope-labeled Metabolomics data". </em>DIMet tool is available <a href="https://github.com/cbib/DIMet/">here</a>, and the tool documentation is accessible in the <a href="https://github.com/cbib/DIMet/wiki/">DIMet wiki page </a>and in its Galaxy site.</p>
<p><strong> </strong>Users of the <strong>Galaxy version of DIMet:</strong></p>
<ul>
<li>download and decompress (unzip) the .zip file.</li>
<li>within the 'datasets_manuscript_DIMet/' there is a sub-folder <strong><em>data/</em></strong>, preserve.</li>
<li>within 'datasets_manuscript_DIMet/' there is a sub-folder <em>config/,</em> the user can delete it as it is not used in the Galaxy version.</li>
<li>use the .csv files that are provided in <strong><em>data/</em></strong> . The specific .csv files to be given as input are explained in each 'dimet_' module in Galaxy.</li>
</ul>
<p> Users of the <strong>command-line</strong> version of <strong>DIMet</strong>:</p>
<ul>
<li>download, decompress it and follow the instructions of the documentation in the <a href="https://github.com/cbib/DIMet/wiki/">DIMet wiki page</a>.</li>
</ul>
<p> </p>
Datasets of the DIMet manuscript
<p>Datasets for reproducing the results of the manuscript "<em>DIMet : An open-source tool for Differential analysis of targeted Isotope-labeled Metabolomics data". </em>DIMet tool is available <a href="https://github.com/cbib/DIMet/">here</a>, and the tool documentation is accessible in the <a href="https://github.com/cbib/DIMet/wiki/">DIMet wiki page </a>and in its Galaxy site.</p>
<p>If running in command-line version, download, decompress it and follow the instructions of the documentation in the <a href="https://github.com/cbib/DIMet/wiki/">DIMet wiki page</a>.</p>
<table>
<tbody>
<tr>
<td>
<p><strong> </strong>Users of the <strong>Galaxy version of DIMet:</strong></p>
<ul>
<li>download and decompress (unzip) the .zip file.</li>
<li>within the 'datasets_manuscript_DIMet/' there is a sub-folder <strong><em>data/</em></strong>, preserve.</li>
<li>within 'datasets_manuscript_DIMet/' there is a sub-folder <em>config/,</em> the user can delete it as it is not used in the Galaxy version.</li>
<li>use the .csv files that are provided in <strong><em>data/</em></strong> . The specific .csv files to be given as input are explained in each 'dimet_' module in Galaxy.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p> </p>
Protein supplementation during an energy-restricted diet induces visceral fat loss and gut microbiota amino acid metabolism activation: a randomized trial
International audienceInteractions between diet and gut microbiota are critical regulators of energy metabolism. The effects of fibre intake have been deeply studied but little is known about the impact of proteins. Here, we investigated the effects of high protein supplementation (Investigational Product, IP) in a double blind, randomised placebo-controled intervention study (NCT01755104) where 107 participants received the IP or an isocaloric normoproteic comparator (CP) alongside a mild caloric restriction. Gut microbiota profiles were explored in a patient subset (nâ=â53) using shotgun metagenomic sequencing. Visceral fat decreased in both groups (IP group:âââ20.8â±â23.2 cm2; CP group:âââ14.5â±â24.3 cm2) with a greater reduction (pâ<â0.05) with the IP supplementation in the Per Protocol population. Microbial diversity increased in individuals with a baseline low gene count (pâ<â0.05). The decrease in weight, fat mass and visceral fat mass significantly correlated with the increase in microbial diversity (pâ<â0.05). Protein supplementation had little effects on bacteria composition but major differences were seen at functional level. Protein supplementation stimulated bacterial amino acid metabolism (90% amino-acid synthesis functions enriched with IP versus 13% in CP group (pâ<â0.01)). Protein supplementation alongside a mild energy restriction induces visceral fat mass loss and an activation of gut microbiota amino-acid metabolism
Transcriptomic Landscape of Prurigo Nodularis Lesional Skin CD3+ T Cells Using Single-Cell RNA Sequencing
International audienceNo abstract availabl
Shotgun metagenomics and systemic targeted metabolomics highlight indole-3-propionic acid as a protective gut microbial metabolite against influenza infection
International audienceThe gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) infection. In the present study, we used high-resolution shotgun metagenomics and targeted metabolomic analysis to characterize influenza-associated changes in the composition and metabolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On D14, perturbation persisted in some species. Functional scale analysis of metagenomic data revealed transient changes in several metabolic pathways, particularly those leading to the production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon abundance and disease marker levels. In particular, IPA was positively correlated with some Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor to influenza outcomes and a potential biomarker of disease severity