139 research outputs found

    Inclusion of Shear Effects, Tension, and Damping in a DTF Beam Model for Cable Modeling

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140406/1/6.2014-0491.pd

    Bakeout Effects on Dynamic Response of Spaceflight Cables

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140691/1/1.a32780.pd

    Atmospheric correction for MASTER image data using localized modelled and observed meteorology and trace gases

    Get PDF
    Atmospheric correction for remote sensing-based studies typically does not use information from spatio-temporally resolved meteorological models. We assessed the effect of using observations and mesoscale weather and chemical transport models on multispectral retrievals of land and ocean properties. We performed two atmospheric corrections on image data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS)/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) airborne simulator over Monterey Bay, California. One correction used local atmospheric profiles of meteorology and trace gases at overpass and the other used the 1976 US Standard default atmospheric profile in the MODTRAN4 radiative transfer model.We found only minor impacts from atmospheric correction in the Fluorescence Line Height index of ocean chlorophyll, but substantive differences in retrievals of surface temperature and the Normalized Difference Vegetation Index. Improvements in sea surface temperature retrieval were validated by in situ measurements. Results indicate that spatio-temporally specific atmospheric correction factors from mesoscale models can improve retrievals of surface properties from remotely sensed image data

    Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period

    Get PDF
    Chronic high surface ozone (O3) levels and the increasing sulfur oxides (SOx = SO2+SO4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer, full-chemistry and adjoint simulations using the STEM atmospheric chemistry model are conducted to assess the contribution of local emission sourcesto SC O3 and to evaluate the impacts of transported sulfur and local emissions on the SC sulfur budgetduring the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O3 levels. California biogenic and fire emissions contribute 3–4 ppb to near-surface O3 over SC, with larger contributions to other regions in CA. During a long-range transport event from Asia starting from 22 June, high SOx levels (up to ~0.7 ppb of SO2 and ~1.3 ppb of SO4) is observed above ~6 km, but they did not affect CA surface air quality. The elevated SOx observed at 1–4 km is estimated to enhance surface SOx over SC by ~0.25 ppb (upper limit) on ~24 June. The near-surface SOx levels over SC during the flight week are attributed mostly to local emissions. Two anthropogenic SOx emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared withobservations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SOx by about a factor of two. Adjoint sensitivity analysis indicated that SO2 levels at 00:00 UTC (17:00 local time) at six SC surface sites were influenced by previous day maritime emissions over the ocean, the terrestrial emissions over nearby urban areas, and by transported SO2 from the north through both terrestrial and maritime areas. Overall maritime emissions contribute 10–70% of SO2 and 20–60% fine SO4 on-shore and over the most terrestrial areas, with contributions decreasing with in-land distance from the coast. Maritime emissions also modify the photochemical environment, shifting O3 production over coastal SC to more VOC-limited conditions. These suggest an important role for shipping emission controls in reducing fine particle and O3concentrations in SC

    Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period

    Get PDF
    Chronic high surface ozone (O_3) levels and the increasing sulfur oxides (SO_x = SO_2 + SO_4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer, full-chemistry and adjoint simulations using the STEM atmospheric chemistry model are conducted to assess the contribution of local emission sourcesto SC O_3 and to evaluate the impacts of transported sulfur and local emissions on the SC sulfur budgetduring the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O_3 levels. California biogenic and fire emissions contribute 3–4 ppb to near-surface O_3 over SC, with larger contributions to other regions in CA. During a long-range transport event from Asia starting from 22 June, high SO_x levels (up to ~0.7 ppb of SO_2 and ~1.3 ppb of SO_4) is observed above ~6 km, but they did not affect CA surface air quality. The elevated SO_x observed at 1–4 km is estimated to enhance surface SO_x over SC by ~0.25 ppb (upper limit) on ~24 June. The near-surface SO_x levels over SC during the flight week are attributed mostly to local emissions. Two anthropogenic SO_x emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared withobservations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SO_x by about a factor of two. Adjoint sensitivity analysis indicated that SO_2 levels at 00:00 UTC (17:00 local time) at six SC surface sites were influenced by previous day maritime emissions over the ocean, the terrestrial emissions over nearby urban areas, and by transported SO_2 from the north through both terrestrial and maritime areas. Overall maritime emissions contribute 10–70% of SO2 and 20–60% fine SO_4 on-shore and over the most terrestrial areas, with contributions decreasing with in-land distance from the coast. Maritime emissions also modify the photochemical environment, shifting O_3 production over coastal SC to more VOC-limited conditions. These suggest an important role for shipping emission controls in reducing fine particle and O_3 concentrations in SC

    Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    Get PDF
    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October–16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific

    Cytomegalovirus Viremia as a Risk Factor for Mortality Prior to Antiretroviral Therapy among HIV-Infected Gold Miners in South Africa

    Get PDF
    BACKGROUND: Cytomegalovirus (CMV) viremia has been shown to be an independent risk factor for increased mortality among HIV-infected individuals in the developing world. While CMV infection is nearly ubiquitous in resource-poor settings, few data are available on the role of subclinical CMV reactivation on HIV. METHODS: Using a cohort of mineworkers with stored plasma samples, we investigated the association between CMV DNA concentration and mortality prior to antiretroviral therapy availability. RESULTS: Among 1341 individuals (median CD4 count 345 cells/µl, 70% WHO stage 1 or 2, median follow-up 0.9 years), 70 (5.2%) had CMV viremia at baseline; 71 deaths occurred. In univariable analysis CMV viremia at baseline was associated with a three-fold increase in mortality (hazard ratio [HR] 3.37; 95% confidence intervals [CI] 1.60, 7.10). After adjustment for CD4 count, WHO stage and HIV viral load (N = 429 with complete data), the association was attenuated (HR 2.27; 95%CI 0.88, 5.83). Mortality increased with higher CMV viremia (≥1,000 copies/ml vs. no viremia, adjusted HR 3.65, 95%CI: 1.29, 10.41). Results were similar using time-updated CMV viremia. CONCLUSIONS: High copy number, subclinical CMV viremia was an independent risk factor for mortality among male HIV-infected adults in South Africa with relatively early HIV disease. Studies to determine whether anti-CMV therapy to mitigate high copy number viremia would increase lifespan are warranted
    corecore