39,982 research outputs found

    On Lorentz violation in e ⁣ ⁣+ ⁣e+ ⁣ ⁣μ ⁣ ⁣+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering at finite temperature

    Full text link
    Small violation of Lorentz and CPT symmetries may emerge in models unifying gravity with other forces of nature. An extension of the standard model with all possible terms that violate Lorentz and CPT symmetries are included. Here a CPT-even non-minimal coupling term is added to the covariant derivative. This leads to a new interaction term that breaks the Lorentz symmetry. Our main objective is to calculate the cross section for the e ⁣ ⁣+ ⁣e+ ⁣ ⁣μ ⁣ ⁣+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering in order to investigate any violation of Lorentz and/or CPT symmetry at finite temperature. Thermo Field Dynamics formalism is used to consider finite temperature effects.Comment: 12 pages, 1 figure, accepted for publication in PL

    Robustness of quantum discord to sudden death

    Get PDF
    We calculate the dissipative dynamics of two-qubit quantum discord under Markovian environments. We analyze various dissipative channels such as dephasing, depolarizing, and generalized amplitude damping, assuming independent perturbation, in which each qubit is coupled to its own channel. Choosing initial conditions that manifest the so-called sudden death of entanglement, we compare the dynamics of entanglement with that of quantum discord. We show that in all cases where entanglement suddenly disappears, quantum discord vanishes only in the asymptotic limit, behaving similarly to individual decoherence of the qubits, even at finite temperatures. Hence, quantum discord is more robust than the entanglement against to decoherence so that quantum algorithms based only on quantum discord correlations may be more robust than those based on entanglement.Comment: 4 figures, 4 page
    corecore