593 research outputs found

    The Trifluoromethyl Group as a Bioisosteric Replacement of the Aliphatic Nitro Group in CB1 Receptor Positive Allosteric Modulators (PAMs)

    Get PDF
    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.9b00252. Experimental procedures, characterization of all intermediates and target compounds, and copies of NMR spectra of compounds 1, 39-57. Molecular formula strings of target compounds are available. ACKNOWLEDGEMENTS. We gratefully thank Signal Pharma and the Canadian Institutes of Health Research Proof of Principle grants PPP-125784 and PP2-139101 for financial support and fellowship (C.C.T), NIH grants R01DA039942, P30DA033934 and VCU School of Pharmacy start-up funds (A.H.L.). We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection. We are grateful to Dr Monica Sani (CNR-ICRM, Milan, Italy) and Mr Massimo Frigerio (Politecnico di Milano, Italy) for the synthesis of two tetrazole-substituted indoles (Het-1 and Het-2)Peer reviewedPostprin

    Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction.

    Get PDF
    G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.This study is funded by the Medical Research Council (MRC) through funding of program leaders provided by the MRC Toxicology Unit (to A.B.T.)

    Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and “Cell Vision”

    Get PDF
    Until now, the results of nanotoxicology research have shown that the interactions between nanoparticles (NPs) and cells are remarkably complex. In order to get a deep understanding of the NP-cell interactions, scientists have focused on the physicochemical effects. However, there are still considerable debates about the regulation of nanomaterials and the reported results are usually in contradictions. Here, we are going to introduce the potential key reasons for these conflicts. In this case, modification of conventional in vitro toxicity assays, is one of the crucial ignored matter in nanotoxicological sciences. More specifically, the conventional methods neglect important factors such as the sedimentation of NPs and absorption of proteins and other essential biomolecules onto the surface of NPs. Another ignored matter in nanotoxicological sciences is the effect of cell “vision” (i.e., cell type). In order to show the effects of these ignored subjects, we probed the effect of superparamagnetic iron oxide NPs (SPIONs), with various surface chemistries, on various cell lines. We found thatthe modification of conventional toxicity assays and the consideration of the “cell vision” concept are crucial matters to obtain reliable, and reproducible nanotoxicology data. These new concepts offer a suitable way to obtain a deep understanding on the cell-NP interactions. In addition, by consideration of these ignored factors, the conflict of future toxicological reports would be significantly decreased

    Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of Sulfasalazine for the treatment of progressing malignant gliomas in adults

    Get PDF
    BACKGROUND: Sulfasalazine, a NF-kappaB and x(c)-cystine/glutamate antiport inhibitor, has demonstrated a strong antitumoral potential in preclinical models of malignant gliomas. As it presents an excellent safety profile, we initiated a phase 1/2 clinical study of this anti-inflammatory drug for the treatment of recurrent WHO grade 3 and 4 astrocytic gliomas in adults. METHODS: 10 patients with advanced recurrent anaplastic astrocytoma (n = 2) or glioblastoma (n = 8) aged 32-62 years were recruited prior to the planned interim analysis of the study. Subjects were randomly assigned to daily doses of 1.5, 3, 4.5, or 6 grams of oral sulfasalazine, and treated until clinical or radiological evidence of disease progression or the development of serious or unbearable side effects. Primary endpoints were the evaluation of toxicities according to the CTCAE v.3.0, and the observation of radiological tumor responses based on MacDonald criteria. RESULTS: No clinical response was observed. One tumor remained stable for 2 months with sulfasalazine treatment, at the lowest daily dose of the drug. The median progression-free survival was 32 days. Side effects were common, as all patients developed grade 1-3 adverse events (mean: 7.2/patient), four patients developed grade 4 toxicity. Two patients died while on treatment or shortly after its discontinuation. CONCLUSION: Although the proper influence of sulfasalazine treatment on patient outcome was difficult to ascertain in these debilitated patients with a large tumor burden (median KPS = 50), ISRCTN45828668 was terminated after its interim analysis. This study urges to exert cautiousness in future trials of Sulfasalazine for the treatment of malignant gliomas. TRIAL REGISTRATION: Current Controlled Trials ISRCTN45828668

    Sexual and reproductive health and human rights of women living with HIV

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138378/1/jia20834-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138378/2/jia20834.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138378/3/jia20834-sup-0002.pd

    New living evidence resource of human and non-human studies for early intervention and research prioritisation in anxiety, depression and psychosis

    Get PDF
    In anxiety, depression and psychosis, there has been frustratingly slow progress in developing novel therapies that make a substantial difference in practice, as well as in predicting which treatments will work for whom and in what contexts. To intervene early in the process and deliver optimal care to patients, we need to understand the underlying mechanisms of mental health conditions, develop safe and effective interventions that target these mechanisms, and improve our capabilities in timely diagnosis and reliable prediction of symptom trajectories. Better synthesis of existing evidence is one way to reduce waste and improve efficiency in research towards these ends. Living systematic reviews produce rigorous, up-to-date and informative evidence summaries that are particularly important where research is emerging rapidly, current evidence is uncertain and new findings might change policy or practice. Global Alliance for Living Evidence on aNxiety, depressiOn and pSychosis (GALENOS) aims to tackle the challenges of mental health science research by cataloguing and evaluating the full spectrum of relevant scientific research including both human and preclinical studies. GALENOS will also allow the mental health community-including patients, carers, clinicians, researchers and funders-to better identify the research questions that most urgently need to be answered. By creating open-access datasets and outputs in a state-of-the-art online resource, GALENOS will help identify promising signals early in the research process. This will accelerate translation from discovery science into effective new interventions for anxiety, depression and psychosis, ready to be translated in clinical practice across the world

    New living evidence resource of human and non-human studies for early intervention and research prioritisation in anxiety, depression and psychosis

    Get PDF
    In anxiety, depression and psychosis, there has been frustratingly slow progress in developing novel therapies that make a substantial difference in practice, as well as in predicting which treatments will work for whom and in what contexts. To intervene early in the process and deliver optimal care to patients, we need to understand the underlying mechanisms of mental health conditions, develop safe and effective interventions that target these mechanisms, and improve our capabilities in timely diagnosis and reliable prediction of symptom trajectories. Better synthesis of existing evidence is one way to reduce waste and improve efficiency in research towards these ends. Living systematic reviews produce rigorous, up-to-date and informative evidence summaries that are particularly important where research is emerging rapidly, current evidence is uncertain and new findings might change policy or practice. Global Alliance for Living Evidence on aNxiety, depressiOn and pSychosis (GALENOS) aims to tackle the challenges of mental health science research by cataloguing and evaluating the full spectrum of relevant scientific research including both human and preclinical studies. GALENOS will also allow the mental health community-including patients, carers, clinicians, researchers and funders-to better identify the research questions that most urgently need to be answered. By creating open-access datasets and outputs in a state-of-the-art online resource, GALENOS will help identify promising signals early in the research process. This will accelerate translation from discovery science into effective new interventions for anxiety, depression and psychosis, ready to be translated in clinical practice across the world

    Interlaboratory comparison study of the Colony Forming Efficiency assay for assessing cytotoxicity of nanomaterials

    Get PDF
    Nanotechnology has gained importance in the past years as it provides opportunities for industrial growth and innovation. However, the increasing use of manufactured nanomaterials (NMs) in a number of commercial applications and consumer products raises also safety concerns and questions regarding potential unintended risks to humans and the environment. Since several years the European Commission’s Joint Research Centre (JRC) is putting effort in the development, optimisation and harmonisation of in vitro test methods suitable for screening and hazard assessment of NMs. Work is done in collaboration with international partners, in particular the Organisation for Economic Co-operation and Development (OECD). This report presents the results from an interlaboratory comparison study of the in vitro Colony Forming Efficiency (CFE) cytotoxicity assay performed in the frame of OECD's Working Party of Manufactured Nanomaterials (WPMN). Twelve laboratories from European Commission, France, Italy, Japan, Poland, Republic of Korea, South Africa and Switzerland participated in the study coordinated by JRC. The results show that the CFE assay is a suitable and robust in vitro method to assess cytotoxicity of NMs. The assay protocol is well defined and is easily and reliably transferable to other laboratories. The results obtained show good intra and interlaboratory reproducibility of the assay for both the positive control and the tested nanomaterials. In conclusion the CFE assay can be recommended as a building block of an in vitro testing battery for NMs toxicity assessment. It could be used as a first choice method to define dose-effect relationships for other in vitro assays.JRC.I.4-Nanobioscience

    Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray

    Get PDF
    Metastatic colorectal carcinomas (CRC) resistant to chemotherapy may benefit from targeting monoclonal therapy cetuximab when they express the epidermal growth factor receptor (EGFR). Because of its clinical implications, we studied EGFR expression by immunohistochemistry on tissue sections of primary CRC (n=32) and their related metastases (n=53). A tissue microarray (TMA) was generated from the same paraffin blocks to determine whether this technique could be used for EGFR screening in CRC. On tissue sections, 84% of the primary CRC and 94% of the metastases were EGFR-positive. When matched, they showed a concordant EGFR-positive status in 78% of the cases. Moreover, staining intensity and extent of EGFR-positive cells in the primary CRC correlated with those observed in the synchronous metastases. On TMA, 65% of the primary CRC, 66% of the metastases, and 43% of the matched primary CRC metastases were EGFR-positive. There was no concordant EGFR status between the primary and the metastatic sites. A strong discrepancy of EGFR status was noted between TMA and tissue sections. In conclusion, EGFR expression measured in tissue sections from primary CRC and their related metastases was found to be similar and frequent, but it was significantly underestimated by the TMA technique
    corecore