42 research outputs found

    Semantic concept detection in imbalanced datasets based on different under-sampling strategies

    Get PDF
    Semantic concept detection is a very useful technique for developing powerful retrieval or filtering systems for multimedia data. To date, the methods for concept detection have been converging on generic classification schemes. However, there is often imbalanced dataset or rare class problems in classification algorithms, which deteriorate the performance of many classifiers. In this paper, we adopt three “under-sampling” strategies to handle this imbalanced dataset issue in a SVM classification framework and evaluate their performances on the TRECVid 2007 dataset and additional positive samples from TRECVid 2010 development set. Experimental results show that our well-designed “under-sampling” methods (method SAK) increase the performance of concept detection about 9.6% overall. In cases of extreme imbalance in the collection the proposed methods worsen the performance than a baseline sampling method (method SI), however in the majority of cases, our proposed methods increase the performance of concept detection substantially. We also conclude that method SAK is a promising solution to address the SVM classification with not extremely imbalanced datasets

    A semantic content analysis model for sports video based on perception concepts and finite state machines

    Get PDF
    In automatic video content analysis domain, the key challenges are how to recognize important objects and how to model the spatiotemporal relationships between them. In this paper we propose a semantic content analysis model based on Perception Concepts (PCs) and Finite State Machines (FSMs) to automatically describe and detect significant semantic content within sports video. PCs are defined to represent important semantic patterns for sports videos based on identifiable feature elements. PC-FSM models are designed to describe spatiotemporal relationships between PCs. And graph matching method is used to detect high-level semantic automatically. A particular strength of this approach is that users are able to design their own highlights and transfer the detection problem into a graph matching problem. Experimental results are used to illustrate the potential of this approac

    A query description model based on basic semantic unit composite Petri-Net for soccer video

    Get PDF
    Digital video networks are making available increasing amounts of sports video data. The volume of material on offer means that sports fans often rely on prepared summaries of game highlights to follow the progress of their favourite teams. A significant application area for automated video analysis technology is the generation of personalized highlights of sports events. One of the most popular sports around world is soccer. A soccer game is composed of a range of significant events, such as goal scoring, fouls, and substitutions. Automatically detecting these events in a soccer video can enable users to interactively design their own highlights programmes. From an analysis of broadcast soccer video, we propose a query description model based on Basic Semantic Unit Composite Petri-Nets (BSUCPN) to automatically detect significant events within soccer video. Firstly we define a Basic Semantic Unit (BSU) set for soccer videos based on identifiable feature elements within a soccer video, Secondly we design Composite Petri-Net (CPN) models for semantic queries and use these to describe BSUCPNs for semantic events in soccer videos. A particular strength of this approach is that users are able to design their own semantic event queries based on BSUCPNs to search interactively within soccer videos. Experimental results based on recorded soccer broadcasts are used to illustrate the potential of this approach

    Video semantic content analysis based on ontology

    Get PDF
    The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results

    UAV group formation collision avoidance method based on second-order consensus algorithm and improved artificial potential field

    Get PDF
    The problem of collision avoidance of an unmanned aerial vehicle (UAV) group is studied in this paper. A collision avoidance method of UAV group formation based on second-order consensus algorithm and improved artificial potential field is proposed. Based on the method, the UAV group can form a predetermined formation from any initial state and fly to the target position in normal flight, and can avoid collision according to the improved smooth artificial potential field method when encountering an obstacle. The UAV group adopts the "leader-follower" strategy, that is, the leader UAV is the controller and flies independently according to the mission requirements, while the follower UAV follows the leader UAV based on the second-order consensus algorithm and formations gradually form during the flight. Based on the second-order consensus algorithm, the UAV group can achieve formation maintenance easily and the Laplacian matrix used in the algorithm is symmetric for an undirected graph. In the process of obstacle avoidance, the improved artificial potential field method can solve the jitter problem that the traditional artificial potential field method causes for the UAV and avoids violent jitter. Finally, simulation experiments of two scenarios were designed to verify the collision avoidance effect and formation retention effect of static obstacles and dynamic obstacles while the two UAV groups fly in opposite symmetry in the dynamic obstacle scenario. The experimental results demonstrate the effectiveness of the proposed method

    Localization and recognition of the scoreboard in sports video based on SIFT point matching

    Get PDF
    In broadcast sports video, the scoreboard is attached at a fixed location in the video and generally the scoreboard always exists in all video frames in order to help viewers to understand the match’s progression quickly. Based on these observations, we present a new localization and recognition method for scoreboard text in sport videos in this paper. The method first matches the Scale Invariant Feature Transform (SIFT) points using a modified matching technique between two frames extracted from a video clip and then localizes the scoreboard by computing a robust estimate of the matched point cloud in a two-stage non-scoreboard filter process based on some domain rules. Next some enhancement operations are performed on the localized scoreboard, and a Multi-frame Voting Decision is used. Both aim to increasing the OCR rate. Experimental results demonstrate the effectiveness and efficiency of our proposed method

    A semantic event detection approach for soccer video based on perception concepts and finite state machines

    Get PDF
    A significant application area for automated video analysis technology is the generation of personalized highlights of sports events. Sports games are always composed of a range of significant events. Automatically detecting these events in a sports video can enable users to interactively select their own highlights. In this paper we propose a semantic event detection approach based on Perception Concepts and Finite State Machines to automatically detect significant events within soccer video. Firstly we define a Perception Concept set for soccer videos based on identifiable feature elements within a soccer video. Secondly we design PC-FSM models to describe semantic events in soccer videos. A particular strength of this approach is that users are able to design their own semantic events and transfer event detection into graph matching. Experimental results based on recorded soccer broadcasts are used to illustrate the potential of this approach

    Short-term rainfall nowcasting: using rainfall radar imaging

    Get PDF
    As one of the most useful sources of quantitative precipitation measurement, rainfall radar analysis can be a very useful focus for research into developing methods for rainfall prediction. Because radar can estimate rainfall distribution over a wide range, it is thus very attractive for weather prediction over a large area. Short lead time rainfall prediction is often needed in meteorological and hydrological applications where accurate prediction of rainfall can help with flood relief, with agriculture and with event planning. A system of short-term rainfall prediction over Ireland using rainfall radar image processing is presented in this paper. As the only input, consecutive rainfall radar images are processed to predict the development of rainfall by means of morphological methods and movement extrapolation. The results of a series of experimental evaluations demonstrate the ability and efficiency of using our rainfall radar imaging in a nowcasting system

    Research on the collision avoidance algorithm for fixed-wing UAVs based on maneuver coordination and planned trajectories prediction

    Get PDF
    El mail de contacte de l'autor correspon a la Universitat Autònoma de BarcelonaThis paper presents a novel collision avoidance (CA) algorithm for a cooperative fixed-wing unmanned aerial vehicle (UAV). The method is based on maneuver coordination and planned trajectory prediction. Each aircraft in a conflict generates three available maneuvers and predicts the corresponding planned trajectories. The algorithm coordinates planned trajectories between participants in a conflict, determines which combination of planned trajectories provides the best separation, eventually makes an agreement on the maneuver for collision avoidance and activates the preferred maneuvers when a collision is imminent. The emphasis is placed on providing protection for UAVs, while activating maneuvers late enough to reduce interference, which is necessary for collision avoidance in the formation and clustering of UAVs. The CA has been validated with various simulations to show the advantage of collision avoidance for continuous conflicts in multiple, high-dynamic, high-density and three-dimensional (3D) environments. It eliminates the disadvantage of traditional CA, which has high uncertainty, and takes the performance parameters of different aircraft into consideration and makes full use of the maneuverability of fixed-wing aircraft

    Automatic summarization of rushes video using bipartite graphs

    Get PDF
    In this paper we present a new approach for automatic summarization of rushes, or unstructured video. Our approach is composed of three major steps. First, based on shot and sub-shot segmentations, we filter sub-shots with low information content not likely to be useful in a summary. Second, a method using maximal matching in a bipartite graph is adapted to measure similarity between the remaining shots and to minimize inter-shot redundancy by removing repetitive retake shots common in rushes video. Finally, the presence of faces and motion intensity are characterised in each sub-shot. A measure of how representative the sub-shot is in the context of the overall video is then proposed. Video summaries composed of keyframe slideshows are then generated. In order to evaluate the effectiveness of this approach we re-run the evaluation carried out by TRECVid, using the same dataset and evaluation metrics used in the TRECVid video summarization task in 2007 but with our own assessors. Results show that our approach leads to a significant improvement on our own work in terms of the fraction of the TRECVid summary ground truth included and is competitive with the best of other approaches in TRECVid 2007
    corecore