1,269 research outputs found
Heat exchanger
A heat exchanger, as exemplified by a rocket combustion chamber, is constructed by stacking thin metal rings having microsized openings therein at selective locations to form cooling passages defined by an inner wall, an outer wall and fins. Suitable manifolds are provided at each end of the rocket chamber. In addition to the cooling channel openings, coolant feed openings may be formed in each of rings. The coolant feed openings may be nested or positioned within generally U-shaped cooling channel openings. Compression on the stacked rings may be maintained by welds or the like or by bolts extending through the stacked rings
Turbine engine Hot Section Technology (HOST) project
The Hot Section Technology (HOST) Project is a NASA-sponsored endeavor to improve the durability of advanced gas turbine engines for commercial and military aircraft. Through improvements in the analytical models and life prediction systems, designs for future hot section components , the combustor and turbine, will be more accurately analyzed and will incorporate features required for longer life in the more hostile operating environment of high performance engines
The E3 combustors: Status and challenges
The design, fabrication, and initial testing of energy efficient engine combustors, developed for the next generation of turbofan engines for commercial aircraft, are described. The combustor designs utilize an annular configuration with two zone combustion for low emissions, advanced liners for improved durability, and short, curved-wall, dump prediffusers for compactness. Advanced cooling techniques and segmented construction characterize the advanced liners. Linear segments are made from castable, turbine-type materials
Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers
The guided modes of sub-wavelength diameter air-clad optical fibers exhibit a
pronounced evanescent field. The absorption of particles on the fiber surface
is therefore readily detected via the fiber transmission. We show that the
resulting absorption for a given surface coverage can be orders of magnitude
higher than for conventional surface spectroscopy. As a demonstration, we
present measurements on sub-monolayers of 3,4,9,10-perylene-tetracarboxylic
dianhydride (PTCDA) molecules at ambient conditions, revealing the
agglomeration dynamics on a second to minutes timescale.Comment: 4 pages, Fig.1a corrected y-axis, p.2 minor text changes to
facilitate the understanding of eq. 4 and
Some aspects of flox-methane rocket engine throttling
Four injector designs and two chamber profiles were experimentally evaluated for structural integrity, combustion efficiency, and resistance to combustion instabilities. Vacuum thrust measurements were used as a primary measure of combustion efficiency. Stability rating to test the sensitivity of the injectors to high frequency combustion was conducted, but not extensively. To map the boundary between stable operation and chugging instability, chamber pressure was throttled downward from 689.5 to 206.9 kN/sq m abs (100 to 30 psia). Best operational results were obtained with an injector configuration having no hydraulic swirlers, a 0.00102-m (0.040-in.) recessed FLOX tube, and a nonflared exit in the methane annulus. This injector design exhibited stable combustion and good integrity of hardware, and it exceeded the design goal efficiency (88 percent) at the 10 to 1 throttled condition
The dynamical equivalence of modified gravity revisited
We revisit the dynamical equivalence between different representations of
vacuum modified gravity models in view of Legendre transformations. The
equivalence is discussed for both bulk and boundary space, by including in our
analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre
transformed action coincides with the usual Einstein frame one. We then
re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second
order theory with a new set of field variables, four tensor fields and one
scalar and study its dynamics. For completeness, we also calculate the
conformal transformation of the full Jordan frame R+f(G) action. All the
appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5.
New results added in Section 6. Version to appear in Class. Quantum Gravit
Theory for the ultrafast ablation of graphite films
The physical mechanisms for damage formation in graphite films induced by
femtosecond laser pulses are analyzed using a microscopic electronic theory. We
describe the nonequilibrium dynamics of electrons and lattice by performing
molecular dynamics simulations on time-dependent potential energy surfaces. We
show that graphite has the unique property of exhibiting two distinct laser
induced structural instabilities. For high absorbed energies (> 3.3 eV/atom) we
find nonequilibrium melting followed by fast evaporation. For low intensities
above the damage threshold (> 2.0 eV/atom) ablation occurs via removal of
intact graphite sheets.Comment: 5 pages RevTeX, 3 PostScript figures, submitted to Phys. Re
Effect of strontium and cooling rate upon eutectic temperatures of A319 aluminum alloy
DTA analysis was used to investigate the solidification reactions of alloy A319 with either 12 or 136 ppm of Sr added. Strontium does not affect primary solidification of (Al) dendrites but modifies the kinetics of the (Al)–Si eutectic. The effects of Sr level and of cooling rate on the characteristic temperatures for the (Al)–Si and other eutectic reactions are described
Creation of the universe with a stealth scalar field
The stealth scalar field is a non-trivial configuration without any
back-reaction to geometry, which is characteristic for non-minimally coupled
scalar fields. Studying the creation probability of the de Sitter universe with
a stealth scalar field by the Hartle and Hawking's semi-classical method, we
show that the effect of the stealth field can be significant. For the class of
scalar fields we consider, creation with a stealth field is possible for a
discrete value of the coupling constant and its creation probability is always
less than that with a trivial scalar field. However, those creation rates can
be almost the same depending on the parameters of the theory.Comment: 7 pages; v2, references added; v3, creation of the open universe
adde
- …