The physical mechanisms for damage formation in graphite films induced by
femtosecond laser pulses are analyzed using a microscopic electronic theory. We
describe the nonequilibrium dynamics of electrons and lattice by performing
molecular dynamics simulations on time-dependent potential energy surfaces. We
show that graphite has the unique property of exhibiting two distinct laser
induced structural instabilities. For high absorbed energies (> 3.3 eV/atom) we
find nonequilibrium melting followed by fast evaporation. For low intensities
above the damage threshold (> 2.0 eV/atom) ablation occurs via removal of
intact graphite sheets.Comment: 5 pages RevTeX, 3 PostScript figures, submitted to Phys. Re