2,511 research outputs found

    Combined effects of bird extinctions and introductions in oceanic islands : Decreased functional diversity despite increased species richness

    Get PDF
    Aim We analyse the consequences of species extinctions and introductions on the functional diversity and composition of island bird assemblages. Specifically, we ask if introduced species have compensated the functional loss resulting from species extinctions. Location Seventy-four oceanic islands (> 100 km(2)) in the Atlantic, Pacific and Indian Oceans. Time period Late Holocene. Major taxa studied Terrestrial and freshwater bird species. Methods We compiled a species list per island (extinct and extant, native and introduced), and then compiled traits per species. We used single-trait analyses to assess the effects of past species extinctions and introductions on functional composition. Then, we used probabilistic hypervolumes in trait space to calculate functional richness and evenness of original versus present avifaunas of each island (and net change), and to estimate how functionally unique are extinct and introduced species on each island. Results The net effects of extinctions and introductions were: an increase in average species richness per island (alpha diversity), yet a decline in diversity across all islands (gamma diversity); an average increase in the prevalence of most functional traits, yet an average decline in functional richness and evenness, associated with the fact that extinct species were functionally more unique (when compared to extant natives) than introduced species. Main conclusions Introduced species are on average offsetting (and even surpassing) the losses of extinct species per island in terms of species richness, and they are increasing the prevalence of most functional traits. However, they are not compensating for the loss of functional richness due to extinctions. Current island bird assemblages are becoming functionally poorer, having lost unique species and being composed of functionally more redundant species. This is likely to have cascading repercussions on the functioning of island ecosystems. We highlight that taxonomic and functional biodiversity should be assessed simultaneously to understand the global impacts of human activities.Peer reviewe

    Bird extinctions and introductions are causing taxonomic and functional homogenization in oceanic islands

    Get PDF
    Humans are quickly reshaping species assemblages through the loss and gain of species at multiple scales. Extinctions and introductions are non-random events known to be contributing to taxonomic homogenization. However, it is not yet clear if they also promote functional homogenization. Here, we assess whether extinctions and introductions are leading to taxonomic and functional homogenization of 64 oceanic island bird assemblages, belonging to 11 archipelagos. Based on island lists of extinct and extant, native and introduced species and on species traits, we use probabilistic hypervolumes in trait space to calculate functional beta-diversity before and after extinctions and introductions. Bird extinctions and introductions promoted taxonomic and functional homogenization on most oceanic islands. These results follow our expectations, considering previous studies on taxonomic homogenization, the predictable link between taxonomic and functional diversity, and the trait similarity of many introduced species, often adapted to anthropogenic habitats, linked to the non-randomness of bird introductions on islands. Taxonomic homogenization was more common across than within archipelagos, also corroborating previous studies describing stronger homogenization on islands that are further apart and thus had distinctive native assemblages. Surprisingly, the widespread loss of species with similar traits, namely large flightless birds, often led to functional differentiation across archipelagos. However, this differentiation effect tended to be offset by the homogenizing effect of introductions. Functional homogenization increases the vulnerability to global changes, by reducing the variability of responses to disturbance and thus the resilience of ecosystem services, posing a threat to human societies on islands. Our results highlight subtle variations in taxonomic and functional beta-diversity of bird assemblages in oceanic islands, providing important insights to allow a better assessment of how anthropogenic changes might alter ecosystem functioning, which is vital to develop effective long-term conservation strategies. Read the free Plain Language Summary for this article on the Journal blog.Peer reviewe

    Insights into the role of fungi in Pine Wilt Disease

    Get PDF
    Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect‐vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue‐stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions

    Flood risk map from hydrological and mobility data: a case study in S\~ao Paulo (Brazil)

    Full text link
    Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built-up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This paper proposes an urban flood risk map from hydrological and mobility data, considering the megacity of S\~ao Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.Comment: 22 pages, 20 figure

    Fungal Communities of the Pine Wilt Disease Complex: Studying the Interaction of Ophiostomatales With Bursaphelenchus xylophilus

    Get PDF
    Original ResearchConsidered one of the most devastating plant–parasitic nematodes worldwide, Bursaphelenchus xylophilus (commonly known as pinewood nematode, PWN) is the causal agent of the pine wilt disease in the Eurasian coniferous forests. This migratory parasitic nematode is carried by an insect vector (Monochamus spp.) into the host tree (Pinus species), where it can feed on parenchymal cells and reproduce massively, resulting in the tree wilting. In declining trees, PWN populations are strongly dependent on fungal communities colonizing the host (predominantly ophiostomatoid fungi known to cause sapwood blue-staining, the blue-stain fungi), which not only influence their development and life cycle but also the number of individuals carried by the insect vector into a new host. Our main aim is to understand if PWN-associated mycobiota plays a key role in the development of PWD, in interaction with the PWN and the insect vector, and to what extent it can be targeted to disrupt the disease cycle. For this purpose, we characterized the fungal communities of Pinus pinaster trees infected and non-infected with PWN in three collection sites in Continental Portugal with different PWD temporal incidences. Our results showed that non-infected P. pinaster mycoflora is more diverse (in terms of abundance and fungal richness) than PWN-infected pine trees in the most recent PWD foci, as opposed to the fungal communities of long-term PWD history sites. Then, due to their ecological importance for PWN survival, representatives of the main ophiostomatoid fungi isolated (Ophiostoma, Leptographium, and Graphilbum) were characterized for their adaptative response to temperature, competition in-between taxa, and as food source for PWN. Under the conditions studied, Leptographium isolates showed promising results for PWN control. They could outcompete the other species, especially O. ips, and significantly reduce the development of PWN populations when compared to Botrytis cinerea (routinely used for PWN lab culturing), suggesting this to be a natural antagonist not only for the other blue-stain species but also for the PWNinfo:eu-repo/semantics/publishedVersio

    Oviposition behaviour of mated or unmated Cleruchoides noackae (Hymenoptera: Mymaridae).

    Get PDF
    Cleruchoides noackae (Hymenoptera: Mymaridae), native to Australia, is the most promising biological control agent for Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae), an exotic Eucalyptus spp. pest in Brazil. The aim of this study was to determine the courtship behaviour, mating and oviposition of unmated or mated C. noackae females parasitizing T. peregrinus eggs utilizing the same rearing system used in biological control programmes in Brazil. The mating behaviour of eleven C. noackae unmated couples was observed and the time taken for males and females to find each other in polystyrene vials and the duration and number of copulations were recorded. Ten unmated or mated females were placed individually in vials with 10 T. peregrinus eggs each, and oviposition behaviour, percentage of eggs inserted and parasitized, viability and sex ratio of emerged C. noackae were recorded. This species lacked defined courtship behaviour and mated in less than an hour after adults? emergence. The time spent finding the first host, evaluating and inserting the ovipositor was similar for mated and unmated C. noackae females, as well as the frequency of inserted and parasitized eggs and their viability. Mated females took less time to find other host eggs and the sex ratio is female-biased. Occurrence of arrhenotokous parthenogenesis was confirmed. The ability of C. noackae to mate and lay eggs in less than one hour and parasitism of T. peregrinus eggs by females can improve the parasitoid mass rearing and biological control of T. peregrinus
    corecore