158,822 research outputs found

    A proposed study of multiple scattering through clouds up to 1 THz

    Get PDF
    A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations

    Non-phosphorylating Respiration of Mitochondria from Brown Adipose Tissue of Rats

    Get PDF
    Nonphosphorylating respiration of mitochondria from brown adipose tissue of rat

    Adhesives for bonding RSI tile to GrPI structure for advanced space transportation systems

    Get PDF
    A system was developed for bonding RSI tiles to a graphite/polymide composite substrate which would withstand the full range of environmental conditions. The bonding system, designated RA59, consists of a mixture of glass (sesquisiloxane) resin in RTV 560 silicone. A significant number of data points for the RA59 are in the 65-psi failure range both when tested, and after exposure to 700 F. This is over two times the best shear and tensile values obtained with RV60 at this temperature. It is concluded that with a thorough understanding of the critical parameters involved, the higher values should be obtained consistently with the RA59. This is of particular significance if higher strength tiles were to be used in a hard-bonded configuration

    Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    Get PDF
    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed

    Magnetically modulated accretion in T Tauri stars

    Get PDF
    We examine how accretion on to T Tauri stars may be modulated by a time-dependent `magnetic gate' where the inner edge of the accretion disc is disrupted by a varying stellar field. We show that magnetic field variations on time-scales shorter than 10^5 yr can modulate the accretion flow, thus providing a possible mechanism both for the marked photometric variability of T Tauri stars and for the possible conversion of T Tauri stars between classical and weak line status. We thus suggest that archival data relating to the spectrophotometric variability of T Tauri stars may provide an indirect record of magnetic activity cycles in low-mass pre-main-sequence stars.Comment: LaTeX file (requires mn.sty), 4 pages, no figures or tables. To appear in MNRAS

    Towards Rapid Parameter Estimation on Gravitational Waves from Compact Binaries using Interpolated Waveforms

    Full text link
    Accurate parameter estimation of gravitational waves from coalescing compact binary sources is a key requirement for gravitational-wave astronomy. Evaluating the posterior probability density function of the binary's parameters (component masses, sky location, distance, etc.) requires computing millions of waveforms. The computational expense of parameter estimation is dominated by waveform generation and scales linearly with the waveform computational cost. Previous work showed that gravitational waveforms from non-spinning compact binary sources are amenable to a truncated singular value decomposition, which allows them to be reconstructed via interpolation at fixed computational cost. However, the accuracy requirement for parameter estimation is typically higher than for searches, so it is crucial to ascertain that interpolation does not lead to significant errors. Here we provide a proof of principle to show that interpolated waveforms can be used to recover posterior probability density functions with negligible loss in accuracy with respect to non-interpolated waveforms. This technique has the potential to significantly increase the efficiency of parameter estimation.Comment: 7 pages, 2 figure

    Water vapor diffusion membranes, 2

    Get PDF
    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine

    Retrospective studies of operating problems in air transport

    Get PDF
    An epidemiological model for the study of human errors in aviation is presented. In this approach, retrospective data are used as the basis for formulation of hypotheses as to system factors which may have contributed to such errors. Prospective experimental studies of aviation operations are also required in order to prove or disprove the hypotheses, and to evaluate the effectiveness of intervention techniques designed to solve operational problems in the aviation system
    corecore