610 research outputs found
Robust half-metallic antiferromagnets LaVOsO and LaMoO ( = Ca, Sr, Ba; = Re, Tc) from first-principles calculations
We have theoretically designed three families of the half-metallic (HM)
antiferromagnets (AFM), namely, LaVOsO, LaMoTcO and
LaMoReO ( = Ca, Sr, Ba), based on a systematic {\it ab initio} study
of the ordered double perovskites LaO with the possible and
pairs from all the 3, 4 and 5 transtion metal elements being
considered. Electronic structure calculations based on first-principles
density-functional theory with generalized gradient approximation (GGA) for
more than sixty double perovskites LaCaO have been performed using the
all-electron full-potential linearized augmented-plane-wave method. The found
HM-AFM state in these materials survives the full {\it ab initio} lattice
constant and atomic position optimizations which were carried out using
frozen-core full potential projector augmented wave method. It is found that
the HM-AFM properties predicted previously in some of the double perovskites
would disappear after the full structural optimizations. The AFM is attributed
to both the superexchange mechanism and the generalized double exchange
mechanism via the () - O (2) - () coupling
and the latter is also believed to be the origin of the HM. Finally, in our
search for the HM-AFMs, we find LaCrTcO and LaCrReO to be AFM
insulators of an unconventional type in the sense that the two
antiferromagnetic coupled ions consist of two different elements and that the
two spin-resolved densities of states are no longer the same.Comment: To appear in Phys. Rev.
Construction of transferable spherically-averaged electron potentials
A new scheme for constructing approximate effective electron potentials
within density-functional theory is proposed. The scheme consists of
calculating the effective potential for a series of reference systems, and then
using these potentials to construct the potential of a general system. To make
contact to the reference system the neutral-sphere radius of each atom is used.
The scheme can simplify calculations with partial wave methods in the
atomic-sphere or muffin-tin approximation, since potential parameters can be
precalculated and then for a general system obtained through simple
interpolation formulas. We have applied the scheme to construct electron
potentials of phonons, surfaces, and different crystal structures of silicon
and aluminum atoms, and found excellent agreement with the self-consistent
effective potential. By using an approximate total electron density obtained
from a superposition of atom-based densities, the energy zero of the
corresponding effective potential can be found and the energy shifts in the
mean potential between inequivalent atoms can therefore be directly estimated.
This approach is shown to work well for surfaces and phonons of silicon.Comment: 8 pages (3 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
First-principle Wannier functions and effective lattice fermion models for narrow-band compounds
We propose a systematic procedure for constructing effective lattice fermion
models for narrow-band compounds on the basis of first-principles electronic
structure calculations. The method is illustrated for the series of
transition-metal (TM) oxides: SrVO, YTiO, VO, and
YMoO. It consists of three parts, starting from LDA. (i)
construction of the kinetic energy Hamiltonian using downfolding method. (ii)
solution of an inverse problem and construction of the Wannier functions (WFs)
for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb
interactions in the basis of \textit{auxiliary} WFs, for which the
kinetic-energy term is set to be zero. The last step is necessary in order to
avoid the double counting of the kinetic-energy term, which is included
explicitly into the model. The screened Coulomb interactions are calculated in
a hybrid scheme. First, we evaluate the screening caused by the change of
occupation numbers and the relaxation of the LMTO basis functions, using the
conventional constraint-LDA approach, where all matrix elements of
hybridization involving the TM orbitals are set to be zero. Then, we switch
on the hybridization and evaluate the screening associated with the change of
this hybridization in RPA. The second channel of screening is very important,
and results in a relatively small value of the effective Coulomb interaction
for isolated bands. We discuss details of this screening and consider
its band-filling dependence, frequency dependence, influence of the lattice
distortion, proximity of other bands, and the dimensionality of the model
Hamiltonian.Comment: 35 pages, 25 figure
The 5f localization/delocalization in square and hexagonal americium monolayers: A FP-LAPW electronic structure study
The electronic and geometrical properties of bulk americium and square and
hexagonal americium monolayers have been studied with the full-potential
linearized augmented plane wave (FP-LAPW) method. The effects of several common
approximations are examined: (1) non-spin polarization (NSP) vs. spin
polarization (SP); (2) scalar-relativity (no spin-orbit coupling (NSO)) vs.
full-relativity (i.e., with spin-orbit (SO) coupling included); (3)
local-density approximation (LDA) vs. generalized-gradient approximation (GGA).
Our results indicate that both spin polarization and spin orbit coupling play
important roles in determining the geometrical and electronic properties of
americium bulk and monolayers. A compression of both americium square and
hexagonal monolayers compared to the americium bulk is also observed. In
general, the LDA is found to underestimate the equilibrium lattice constant and
give a larger total energy compared to the GGA calculations. While spin orbit
coupling shows a similar effect on both square and hexagonal monolayer
calculations regardless of the model, GGA versus LDA, an unusual spin
polarization effect on both square and hexagonal monolayers is found in the LDA
results as compared with the GGA results. The 5f delocalization transition of
americium is employed to explain our observed unusual spin polarization effect.
In addition, our results at the LDA level of theory indicate a possible 5f
delocalization could happen in the americium surface within the same Am II (fcc
crystal structure) phase, unlike the usually reported americium 5f
delocalization which is associated with crystal structure change. The
similarities and dissimilarities between the properties of an Am monolayer and
a Pu monolayer are discussed in detail.Comment: 22 pages, 8 figure
LDA+DMFT computation of the electronic spectrum of NiO
The electronic spectrum, energy gap and local magnetic moment of paramagnetic
NiO are computed by using the local density approximation plus dynamical
mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian
obtained within the local density approximation (LDA) is expressed in Wannier
functions basis, with only the five anti-bonding bands with mainly Ni 3d
character taken into account. Complementing it by local Coulomb interactions
one arrives at a material-specific many-body Hamiltonian which is solved by
DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating
gap in NiO is found to be a result of the strong electronic correlations in the
paramagnetic state. In the vicinity of the gap region, the shape of the
electronic spectrum calculated in this way is in good agreement with the
experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy
results of Sawatzky and Allen. The value of the local magnetic moment computed
in the paramagnetic phase (PM) agrees well with that measured in the
antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the
local magnetic moment in the PM phase are in accordance with the experimental
finding that AFM long-range order has no significant influence on the
electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio
Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis
OBJECTIVE: Glycemic variability is emerging as a measure of glycemic control, which may be a reliable predictor of complications. This systematic review and meta-analysis evaluates the association between HbA1c variability and micro- and macrovascular complications and mortality in type 1 and type 2 diabetes. RESEARCH DESIGN AND METHODS: Medline and Embase were searched (2004–2015) for studies describing associations between HbA1c variability and adverse outcomes in patients with type 1 and type 2 diabetes. Data extraction was performed independently by two reviewers. Random-effects meta-analysis was performed with stratification according to the measure of HbA1c variability, method of analysis, and diabetes type. RESULTS: Seven studies evaluated HbA1c variability among patients with type 1 diabetes and showed an association of HbA1c variability with renal disease (risk ratio 1.56 [95% CI 1.08–2.25], two studies), cardiovascular events (1.98 [1.39–2.82]), and retinopathy (2.11 [1.54–2.89]). Thirteen studies evaluated HbA1c variability among patients with type 2 diabetes. Higher HbA1c variability was associated with higher risk of renal disease (1.34 [1.15–1.57], two studies), macrovascular events (1.21 [1.06–1.38]), ulceration/gangrene (1.50 [1.06–2.12]), cardiovascular disease (1.27 [1.15–1.40]), and mortality (1.34 [1.18–1.53]). Most studies were retrospective with lack of adjustment for potential confounders, and inconsistency existed in the definition of HbA1c variability. CONCLUSIONS: HbA1c variability was positively associated with micro- and macrovascular complications and mortality independently of the HbA1c level and might play a future role in clinical risk assessment
Calculation of the work function with a local basis set
Electronic structure codes usually allow to calculate the work function as a
part of the theoretical description of surfaces and processes such as
adsorption thereon. This requires a proper calculation of the electrostatic
potential in all regions of space, which is apparently straightforward to
achieve with plane wave basis sets, but more difficult with local basis sets.
To overcome this, a relatively simple scheme is proposed to accurately compute
the work function when a local basis set is used, by having some additional
basis functions in the vacuum. Tests on various surfaces demonstrate that a
very good agreement with experimental and other theoretical data can be
achieved.Comment: to appear in Surf. Sci. Let
Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
We present a simple implementation of the dynamical mean-field theory
approach to the electronic structure of strongly correlated materials. This
implementation achieves full self-consistency over the charge density, taking
into account correlation-induced changes to the total charge density and
effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,
and the charge density is computed from moments of the many body
momentum-distribution matrix. The calculation of the total energy is also
considered, with a proper treatment of high-frequency tails of the Green's
function and self-energy. The method is illustrated on two materials with
well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the
gamma-phase of metallic cerium, using the Hubbard-I approximation to the
dynamical mean-field self-energy. The momentum-integrated spectral function and
momentum-resolved dispersion of the Hubbard bands are calculated, as well as
the volume-dependence of the total energy. We show that full self-consistency
over the charge density, taking into account its modification by strong
correlations, can be important for the computation of both thermodynamical and
spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B
Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd
This paper reports calculations for compressed Ce (4f^1), Pr (4f^2), and Nd
(4f^3) using a combination of the local-density approximation (LDA) and
dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and
the total energy among other properties are examined as functions of volume and
atomic number for an assumed face-centered cubic (fcc) structure.Comment: 15 pages, 9 figure
A Density Functional Study of Atomic Hydrogen and Oxygen Chemisorption on the Relaxed (0001) Surface of Double Hexagonal Close Packed Americium
Ab initio total energy calculations within the framework of density
functional theory have been performed for atomic hydrogen and oxygen
chemisorption on the (0001) surface of double hexagonal packed americium using
a full-potential all-electron linearized augmented plane wave plus local
orbitals method. Chemisorption energies were optimized with respect to the
distance of the adatom from the relaxed surface for three adsorption sites,
namely top, bridge, and hollow hcp sites, the adlayer structure corresponding
to coverage of a 0.25 monolayer in all cases. Chemisorption energies were
computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at
the fully relativistic level (with spin-orbit coupling SOC). The two-fold
bridge adsorption site was found to be the most stable site for O at both the
NSOC and SOC theoretical levels with chemisorption energies of 8.204 eV and
8.368 eV respectively, while the three-fold hollow hcp adsorption site was
found to be the most stable site for H with chemisorption energies of 3.136 eV
at the NSOC level and 3.217 eV at the SOC level. The respective distances of
the H and O adatoms from the surface were found to be 1.196 Ang. and 1.164 Ang.
Overall our calculations indicate that chemisorption energies in cases with SOC
are slightly more stable than the cases with NSOC in the 0.049-0.238 eV range.
The work functions and net magnetic moments respectively increased and
decreased in all cases compared with the corresponding quantities of bare dhcp
Am (0001) surface. The partial charges inside the muffin-tins, difference
charge density distributions, and the local density of states have been used to
analyze the Am-adatom bond interactions in detail. The implications of
chemisorption on Am 5f electron localization-delocalization are also discussed.Comment: 9 Tables, 5 figure
- …