552 research outputs found

    Trabecular bone structure correlates with hand posture and use in hominoids

    Get PDF
    Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred behaviour and trabecular structure in extant hominoids that can be informative for reconstructing behaviour in fossil primates

    First metatarsal trabecular bone structure in extant hominoids and Swartkrans hominins

    Get PDF
    Changes in first metatarsal (MT1) morphology within the hominin clade are crucial for reconstructing the evolution of a forefoot adapted for human-like gait. Studies of the external morphology of the MT1 in humans, non-human apes, and fossil hominins have documented changes in its robusticity, epiphyseal shape and its articulation with the medial cuneiform. Here, we test whether trabecular structure in the MT1 reflects different loading patterns in the forefoot across extant large apes and humans, and within this comparative context, infer locomotor behavior in two fossil hominins from Swartkrans, South Africa. Microtomographic scans were collected from the MT1 of Pongo sp. (n = 6), Gorilla gorilla (n = 10), Pan troglodytes (n = 10), Homo sapiens (n = 11), as well as SKX 5017 (Paranthropus robustus), and SK 1813 (Hominin gen. sp. indet.). Trabecular structure was quantified within the head and base using a ‘whole-epiphysis’ approach with medtool 4.2. We found that modern humans displayed relatively higher bone volume fraction (BV/TV) in the dorsal region of each epiphysis and a higher overall degree of anisotropy (DA), whereas great apes showed higher BV/TV in the plantar regions, reflecting dorsiflexion at the metatarsophalangeal (MTP) joint in the former and plantarflexion in the latter. Both fossils displayed low DA, with SKX 5017 showing a hyper-dorsal concentration of trabecular bone in the head (similar to humans), while SK 1813 showed a more central trabecular distribution not seen in either humans or non-human apes. Additionally, we found differences between non-human apes, modern humans, and the fossil taxa in trabecular spacing (Tb.Sp.), number (Tb.N.), and thickness (Tb.th.). While low DA in both fossils suggests increased mobility of the MT1, differences in their trabecular distributions could indicate variable locomotion in these Pleistocene hominins (recognizing that the juvenile status of SK 1813 is a potential confounding factor). In particular, evidence for consistent loading in hyper-dorsiflexion in SKX 5017 would suggest locomotor behaviors beyond human-like toe off during terrestrial locomotion

    A tooth crown morphology framework for interpreting the diversity of primate dentitions

    Get PDF
    Variation in tooth crown morphology plays a crucial role in species diagnoses, phylogenetic inference, and the reconstruction of the evolutionary history of the primate clade. While a growing number of studies have identified developmental mechanisms linked to tooth size and cusp patterning in mammalian crown morphology, it is unclear (1) to what degree these are applicable across primates and (2) which additional developmental mechanisms should be recognized as playing important roles in odontogenesis. From detailed observations of lower molar enamel–dentine junction morphology from taxa representing the major primate clades, we outline multiple phylogenetic and developmental components responsible for crown patterning, and formulate a tooth crown morphology framework for the holistic interpretation of primate crown morphology. We suggest that adopting this framework is crucial for the characterization of tooth morphology in studies of dental development, discrete trait analysis, and systematics

    Premolar root and canal variation in South African Plio-Pleistocene specimens attributed to Australopithecus africanus and Paranthropus robustus

    Get PDF
    South African hominin fossils attributed to Australopithecus africanus derive from the cave sites of Makapansgat, Sterkfontein, and Taung, from deposits dated between about 2 and 3 million years ago (Ma), while Paranthropus robustus is known from Drimolen, Kromdraai, and Swartkrans, from deposits dated between about 1 and 2 Ma. Although variation in the premolar root complex has informed taxonomic and phylogenetic hypotheses for these fossil hominin species, traditionally there has been a focus on external root form, number, and position. In this study, we use microtomography to undertake the first comprehensive study of maxillary and mandibular premolar root and canal variation in Australopithecus africanus and Paranthropus robustus (n = 166 teeth) within and between the species. We also test for correlations between premolar size and root morphology as predicted under the ‘size/number continuum’ (SNC) model, which correlates increasing root number with tooth size. Our results demonstrate previously undocumented variation in these two fossil hominin species and highlight taxonomic differences in the presence and frequency of particular root types, qualitative root traits, and tooth size (measured as cervix cross-sectional area). Patterns of tooth size and canal/root number are broadly consistent with the SNC model, however statistically significant support is limited. The implications for hominin taxonomy in light of the increased variation in root morphology documented in this study are discussed

    Growth response of dental tissues to developmental stress in the domestic pig (Sus scrofa)

    Get PDF
    Objectives: To compare relative response of enamel, dentin and bone to developmental stressors between attritional and catastrophic mortality assemblages of pigs. Materials and methods: Heads from 70 Sus scrofa of known sex, weight and age comprising an attritional sample of 50 sick pen (SP) pigs that died prematurely versus 20 control pigs slaughtered at 6 months (Catastrophic assemblage). Hard tissue changes (alveolar bone thinning), abnormal bone formation (Harris lines) and re‐modeling (auditory bullae) were recorded. Areas and volumes of coronal enamel and dentin were recorded from microCT scans with Avizo 6.3 and Geomagic Wrap. Results: Attritional and catastrophic assemblages are metrically indistinguishable. Ages at death and tissue measures in the SP pigs are differentially distributed, necessitating partition into developmental outcome cohorts. SP “late death” pigs are of lesser physiological maturity than expected, free of disease, with large dental tissue dimensions, comparable to “Controls”. SP “early death” pigs have 5% less dentin and enamel and chronic bone infection. Older cohorts of the SP “early deaths” mortality assemblage show progressively reduced enamel. SP pigs show dental evidence of reduced bone mass in the maxilla. Discussion: Bone, dentin and enamel tissues, each, respond distinctively to developmental stressors. Bone mass evinces malnutrition not disease. Both dental tissue reduction and abnormal bone formation link to chronic infection. Paradoxically, reduced dentin mass signals lower survivorship while reduced enamel signals enhanced survivorship. Meaningful comparison of Attritional and Catastrophic assemblages necessitates recognition of developmental outcome cohorts, stratified by age at death and physiological maturity, to reveal heterogeneity of survivorship, tissue measures and lesions

    Primate tooth crown nomenclature revisited

    Get PDF
    Cusp patterning on living and extinct primate molar teeth plays a crucial role in species diagnoses, phylogenetic inference, and the reconstruction of the evolutionary history of the primate clade. These studies rely on a system of nomenclature that can accurately identify and distinguish between the various structures of the crown surface. However, studies at the enamel-dentine junction (EDJ) of some primate taxa have demonstrated a greater degree of cusp variation and expression at the crown surface than current systems of nomenclature allow. In this study, we review the current nomenclature and its applicability across all the major primate clades based on investigations of mandibular crown morphology at the enamel-dentine junction revealed through microtomography. From these observations, we reveal numerous new patterns of lower molar accessory cusp expression in primates. We highlight numerous discrepancies between the expected patterns of variation inferred from the current academic literature, and the new patterns of expected variation seen in this study. Based on the current issues associated with the crown nomenclature, and an incomplete understanding of the precise developmental processes associated with each individual crown feature, we introduce these structures within a conservative, non-homologous naming scheme that focuses on simple location-based categorisations. Until there is a better insight into the developmental and phylogenetic origin of these crown features, these categorisations are the most practical way of addressing these structures. Until then, we also suggest the cautious use of accessory cusps for studies of taxonomy and phylogeny

    Linear enamel hypoplasia in Homo naledi re-appraised in light of new Retzius periodicities

    Get PDF
    Objectives: Among low latitude apes, developmental defects of enamel often recur twice yearly, linkable to environmental cycles. Surprisingly, teeth of Homo naledi from Rising Star in South Africa (241-335 kya), a higher latitude site with today a single rainy season, also exhibit bimodally distributed hypoplastic enamel defects, but with uncertain timing and etiology. Newly-determined Retzius periodicities for enamel formation in this taxon enable a reconstruction of the temporal patterning of childhood stress. Methods: Using high resolution casts of 31 isolated anterior teeth from Homo naledi, 82 enamel defects (linear enamel hypoplasia-LEH) were identified. 17 teeth are assigned to three individuals. Perikymata in the occlusal wall of enamel furrows and between the onsets of successive LEH were visualized with scanning electron microscopy, and counted. Defects were measured with an optical scanner. Conversion of perikymata counts to estimates of LEH duration and inter-LEH interval draws upon Retzius periodicities of 9 and 11 days. Results: Anterior teeth record more than a year of developmental distress, expressed as two asymmetric intervals centered on 4.5 and 7.5-months bounded by 3 LEH. Durations, also, show bimodal distributions, lasting three or 12 weeks. Short duration LEH are more severe than long duration. Relative incisor/canine rates of formation are indistinguishable from modern humans. Discussion: We invoke a disease and dearth model, with short episodes of distress reflecting onset of disease in young infants, lasting about three weeks, followed by a season of undernutrition, possibly intensified by secondary plant compounds, spanning about 12 weeks, inferably coincident with austral winter

    Instrumentation for Routine Analysis of Acrylamide in French Fries: Assessing Limitations for Adoption

    Get PDF
    The purpose of this experimental review was to detect acrylamide in French fries using methods most adaptable to the food process industry for quality control assessment of products. French fries were prepared at different cook times using the same fryer oil over a five-day period to assess the influence of oil degradation and monitor trends in acrylamide formation. Acrylamide detection was performed using LC-MS, GC-MS and FT-NIR. The low levels of acrylamide produced during frying, low molecular weight of the analyte, and complexity of the potato matrix make routine acrylamide measurement challenging in a well-outfitted analytical lab with trained personnel. The findings of this study are presented from the perspective of pros and cons of each acrylamide measurement method in enough detail for food processors to appraise the method that may work best for them based on their available instrumentation and extent of personnel training

    Cortical bone mapping: An application to hand and foot bones in hominoids

    Get PDF
    Bone form reflects both the genetic profile and behavioural history of an individual. As cortical bone is able to remodel in response to mechanical stimuli, interspecific differences in cortical bone thickness may relate to loading during locomotion or manual behaviours during object manipulation. Here, we test the application of a novel method of cortical bone mapping to the third metacarpal (Mc3) and talus of Pan, Pongo, and Homo. This method of analysis allows measurement of cortical thickness throughout the bone, and as such is applicable to elements with complex morphology. In addition, it allows for registration of each specimen to a canonical surface, and identifies regions where cortical thickness differs significantly between groups. Cortical bone mapping has potential for application to palaeoanthropological studies; however, due to the complexity of correctly registering homologous regions across varied morphology, further methodological development would be advantageous

    Trabecular distribution of proximal tibia in extant apes

    Get PDF
    Extant apes are characterized by a wide range of locomotor, postural and manipulative behaviours that require each to use their limbs in different ways. In addition to external bone morphology, comparative investigation of trabecular bone can provide novel insights into bone functional adaptation. Two previous studies [1,2] have examined trabecular bone structure in the hominoid knee joint but have focused on the distal femur only. We build upon these previous studies to characterize trabecular structure of the proximal tibia in extant apes. Here we analyze the trabecular morphology of proximal tibial epiphysis of Homo sapiens (N = 25), Gorilla gorilla (N=13), Pan troglodytes verus (N = 15), and Pongo spp. (N = 7) to determine how variation in trabecular structure reflects differences in locomotor behaviour and to establish patterns of proximal tibia loading in extant taxa. Trabecular bone was imaged using microtomography with an isometric voxel resolution of 30-70 microns. Bone tissues were segmented using the medical image analysis (MIA) clustering method [3]. Canonical holistic morphometric analysis (cHMA) [4] was used to analyze relative bone volume fraction (rBV/TV) and patterns of rBV/TV distribution within and between taxa were investigated via principal component analysis (PCA). A PCA of rBV/TV shows clear separation between extant ape taxa. In humans, trabecular density is similarly concentrated in circular regions in the middle of both the medial and lateral condyles, which distinguishes them from all other apes on PC1. In African apes, the trabecular bone is denser on the medial side (penetrating the entire condyle) suggesting differential loading of the tibia plateau. [italics]Pongo[italics] also exhibits greater density on the medial side but differs from African apes in having less rBV/TV at the margins of the condyles. Values of rBV/TV under the articulation with proximal tibia (and on the thibial plateau) are significantly higher compared to rest of the lateral condyle in all taxa. [italics]Pongo[italics] (positive PC2) separates from [italics]Gorilla[italics] (negative PC2) due to the higher rBV/TV concentration in the middle of both tibial condyles on tibial plateau. Additionally, rBV/TV concentration is the lowest in orangutans, which separates them from gorillas (PC2) as well as from chimpanzees (PC3). Trabecular distribution in humans is consistent with an extended knee position and bipedal locomotion where the load is spread more equally between both tibial condyles. However, trabecular distribution in non-human apes is consistent with flexed knee positions compared to humans and with primarily medial loading due to the higher knee adduction moment, varus angle and ground reaction forces. The pattern of trabecular distribution in orangutans reflects their more variable knee joint postures during locomotion. These results provide the comparative context to interpret knee posture and, in turn, locomotor behaviours in fossil hominins
    corecore