87 research outputs found

    β-Barrel scaffolds for the grafting of extracellular loops from G-protein-coupled receptors

    Get PDF
    Owing to the difficulties in production and purification of G-protein-coupled receptors (GPCRs), relatively little structural information is available about this class of receptors. Here we aim at developing small chimeric proteins, displaying the extracellular ligand-binding motifs of a human GPCR, the Y receptor. This allows the study of ligand-receptor interactions in simplified systems. We present comprehensive information on the use of transmembrane (OmpA) and soluble (Blc) β-barrel scaffolds. Whereas Blc appeared to be not fully compatible with our approach, owing to problems with refolding of the hybrid constructs, loop-grafted versions of OmpA delivered encouraging results. Previously, we described a chimeric construct based on OmpA displaying all three extracellular Y1 receptor loops in different topologies and showing moderate affinity to one of the natural ligands. Now, we present detailed data on the interaction of these constructs with several Y receptor ligands along with data on new constructs. Our findings suggest a common binding mode for all ligands, which is mediated through the C-terminal residues of the peptide ligand, supporting the functional validity of these hybrid receptors. The observed binding affinities, however, are well below those observed for the natural receptors, clearly indicating limitations in mimicking the natural system

    β-Barrel scaffolds for the grafting of extracellular loops from G-protein-coupled receptors

    Get PDF
    Owing to the difficulties in production and purification of G-protein-coupled receptors (GPCRs), relatively little structural information is available about this class of receptors. Here we aim at developing small chimeric proteins, displaying the extracellular ligand-binding motifs of a human GPCR, the Y receptor. This allows the study of ligand-receptor interactions in simplified systems. We present comprehensive information on the use of transmembrane (OmpA) and soluble (Blc) β-barrel scaffolds. Whereas Blc appeared to be not fully compatible with our approach, owing to problems with refolding of the hybrid constructs, loop-grafted versions of OmpA delivered encouraging results. Previously, we described a chimeric construct based on OmpA displaying all three extracellular Y1 receptor loops in different topologies and showing moderate affinity to one of the natural ligands. Now, we present detailed data on the interaction of these constructs with several Y receptor ligands along with data on new constructs. Our findings suggest a common binding mode for all ligands, which is mediated through the C-terminal residues of the peptide ligand, supporting the functional validity of these hybrid receptors. The observed binding affinities, however, are well below those observed for the natural receptors, clearly indicating limitations in mimicking the natural system

    Structure of the human heterodimeric transporter 4F2hc-LAT2 in complex with Anticalin, an alternative binding protein for applications in single-particle cryo-EM.

    Get PDF
    Cryo-EM structure determination of relatively small and flexible membrane proteins at high resolution is challenging. Increasing the size and structural features by binding of high affinity proteins to the biomolecular target allows for better particle alignment and may result in structural models of higher resolution and quality. Anticalins are alternative binding proteins to antibodies, which are based on the lipocalin scaffold and show potential for theranostic applications. The human heterodimeric amino acid transporter 4F2hc-LAT2 is a membrane protein complex that mediates transport of certain amino acids and derivatives thereof across the plasma membrane. Here, we present and discuss the cryo-EM structure of human 4F2hc-LAT2 in complex with the anticalin D11vs at 3.2 Å resolution. Relative high local map resolution (2.8-3.0 Å) in the LAT2 substrate binding site together with molecular dynamics simulations indicated the presence of fixed water molecules potentially involved in shaping and stabilizing this region. Finally, the presented work expands the application portfolio of anticalins and widens the toolset of binding proteins to promote high-resolution structure solution by single-particle cryo-EM

    An Evolutionary Perspective of the Lipocalin Protein Family

    Get PDF
    The protein family of Lipocalins is ubiquitously present throughout the tree of life, with the exception of the phylum Archaea. Phylogenetic relationships of chordate Lipocalins have been proposed in the past based on protein sequence similarities, but their highly divergent primary structures and a shortage of experimental annotations in genome projects have precluded a well-supported hypothesis for their evolution. In this work we propose a novel topology for the phylogenetic tree of chordate Lipocalins, inferred from multiple amino acid sequence alignments. Sixteen jawed vertebrates with fair coverage by genomic sequencing were compared. The selected species span an evolutionary range of ∼400 million years, allowing for a balanced representation of all major vertebrate clades. A consensus phylogenetic tree is proposed following a comparison of sequence-based maximum-likelihood trees and protein structure dendrograms. This new phylogeny suggests an APOD-like common ancestor in early chordates, which gave rise, via whole-genome or tandem duplications, to the six Lipocalins currently present in fish (APOD, RBP4, PTGDS, AMBP, C8G, and APOM). Further gene duplications of APOM and PTGDS resulted in the altogether 15 Lipocalins found in contemporary mammals. Insights into the functional impact of relevant amino acid residues in early diverging Lipocalins are also discussed. These results should foster the experimental exploration of novel functions alongside the identification of new members of the Lipocalin family.España Ministerio de Ciencia e Innovación grant PID2019-110911RB-I0

    Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting

    Get PDF
    A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research

    Structure of the first representative of Pfam family PF09410 (DUF2006) reveals a structural signature of the calycin superfamily that suggests a role in lipid metabolism

    Get PDF
    The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79347/1/S1744309109037749.pd

    NMR Structure of Lipoprotein YxeF from Bacillus subtilis Reveals a Calycin Fold and Distant Homology with the Lipocalin Blc from Escherichia coli

    Get PDF
    The soluble monomeric domain of lipoprotein YxeF from the Gram positive bacterium B. subtilis was selected by the Northeast Structural Genomics Consortium (NESG) as a target of a biomedical theme project focusing on the structure determination of the soluble domains of bacterial lipoproteins. The solution NMR structure of YxeF reveals a calycin fold and distant homology with the lipocalin Blc from the Gram-negative bacterium E.coli. In particular, the characteristic β-barrel, which is open to the solvent at one end, is extremely well conserved in YxeF with respect to Blc. The identification of YxeF as the first lipocalin homologue occurring in a Gram-positive bacterium suggests that lipocalins emerged before the evolutionary divergence of Gram positive and Gram negative bacteria. Since YxeF is devoid of the α-helix that packs in all lipocalins with known structure against the β-barrel to form a second hydrophobic core, we propose to introduce a new lipocalin sub-family named ‘slim lipocalins’, with YxeF and the other members of Pfam family PF11631 to which YxeF belongs constituting the first representatives. The results presented here exemplify the impact of structural genomics to enhance our understanding of biology and to generate new biological hypotheses

    The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma

    Get PDF
    The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM

    Design künstlicher Proteine mit neuen Eigenschaften

    No full text
    • …
    corecore