691 research outputs found

    A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry

    Full text link
    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong non-gravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO.The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The apparatus is now being constructed

    Correspondence between Electro-Magnetic Field and other Dark Energies in Non-linear Electrodynamics

    Full text link
    In this work, we have considered the flat FRW model of the universe filled with electro-magnetic field. First, the Maxwell's electro-magnetic field in linear form has been discussed and after that the modified Lagrangian in non-linear form for accelerated universe has been considered. The corresponding energy density and pressure for non-linear electro-magnetic field have been calculated. We have found the condition such that the electro-magnetic field generates dark energy. The correspondence between the electro-magnetic field and the other dark energy candidates namely tachyonic field, DBI-essence, Chaplygin gas, hessence dark energy, k-essenece and dilaton dark energy have been investigated. We have also reconstructed the potential functions and the scalar fields in this scenario.Comment: 11 pages, 7 figure

    Is Cosmology Solved?

    Get PDF
    We have fossil evidence from the thermal background radiation that our universe expanded from a considerably hotter denser state. We have a well defined and testable description of the expansion, the relativistic Friedmann-Lemaitre model. Its observational successes are impressive but I think hardly enough for a convincing scientific case. The lists of observational constraints and free hypotheses within the model have similar lengths. The scorecard on the search for concordant measures of the mass density parameter and the cosmological constant shows that the high density Einstein-de Sitter model is challenged, but that we cannot choose between low density models with and without a cosmological constant. That is, the relativistic model is not strongly overconstrained, the usual test of a mature theory. Work in progress will greatly improve the situation and may at last yield a compelling test. If so, and the relativistic model survives, it will close one line of research in cosmology: we will know the outlines of what happened as our universe expanded and cooled from high density. It will not end research: some of us will occupy ourselves with the details of how galaxies and other large-scale structures came to be the way they are, others with the issue of what our universe was doing before it was expanding. The former is being driven by rapid observational advances. The latter is being driven mainly by theory, but there are hints of observational guidance.Comment: 13 pages, 3 figures. To be published in PASP as part of the proceedings of the Smithsonian debate, Is Cosmology Solved

    Experimental Designs for Binary Data in Switching Measurements on Superconducting Josephson Junctions

    Full text link
    We study the optimal design of switching measurements of small Josephson junction circuits which operate in the macroscopic quantum tunnelling regime. Starting from the D-optimality criterion we derive the optimal design for the estimation of the unknown parameters of the underlying Gumbel type distribution. As a practical method for the measurements, we propose a sequential design that combines heuristic search for initial estimates and maximum likelihood estimation. The presented design has immediate applications in the area of superconducting electronics implying faster data acquisition. The presented experimental results confirm the usefulness of the method. KEY WORDS: optimal design, D-optimality, logistic regression, complementary log-log link, quantum physics, escape measurement

    The most storage economical Runge-Kutta methods for the solution of large systems of coupled first-order differential equations

    Get PDF
    AbstractIt is shown how the attainable minimum for the memory requirements of Runge-Kutta methods can be realised for methods of the third order. These economisable third order methods belong to a one parameter sub-family from which two particular members with low error bound are selected

    Recombinant GPI-anchored TIMP-1 stimulates growth and migration of peritoneal mesothelial cells.

    Get PDF
    Mesothelial cells are critical in the pathogenesis of post-surgical intraabdominal adhesions as well as in the deterioration of the peritoneal membrane associated with long-term peritoneal dialysis. Mesothelial denudation is a pathophysiolocigally important finding in these processes. Matrix metalloproteinase (MMP) biology underlies aspects of mesothelial homeostasis as well as wound repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) moderate MMP activity. METHODS AND FINDING: By modifying human TIMP-1 through the addition of a glycosylphosphatidylinositol (GPI) anchor, a recombinant protein was generated that efficiently focuses TIMP-1 on the cell surface. Treatment of primary mesothelial cells with TIMP-1-GPI facilitates their mobilization and migration leading to a dramatic increase in the rate of wound experimental closure. Mesothelial cells treated with TIMP-1-GPI showed a dose dependent increase in cell proliferation, reduced secretion of MMP-2, MMP-9, TNF-α and urokinase-type plasminogen activator (uPA), but increased tissue plasminogen activator (t-PA). Treatment resulted in reduced expression and processing of latent TGF-β1. TIMP-1-GPI stimulated rapid and efficient in vitro wound closure. The agent enhanced mesothelial cell proliferation and migration and was bioactive in the nanogram range. The application of TIMP-1-GPI may represent a new approach for limiting or repairing damaged mesothelium

    The Adventures of the Rocketeer: Accelerated Motion Under the Influence of Expanding Space

    Full text link
    It is well known that interstellar travel is bounded by the finite speed of light, but on very large scales any rocketeer would also need to consider the influence of cosmological expansion on their journey. This paper examines accelerated journeys within the framework of Friedmann- Lemaitre-Robertson-Walker universes, illustrating how the duration of a fixed acceleration sharply divides exploration over interstellar and intergalactic distances. Furthermore, we show how the universal expansion increases the difficulty of intergalactic navigation, with small uncertainties in cosmological parameters resulting in significantly large deviations. This paper also shows that, contrary to simplistic ideas, the motion of any rocketeer is indistinguishable from Newtonian gravity if the acceleration is kept small.Comment: 9 pages, 7 figures, accepted for publication in PAS

    A Testable Solution of the Cosmological Constant and Coincidence Problems

    Full text link
    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, Λ\Lambda, is linked to other observable properties of the universe. This is achieved by promoting the CC from a parameter which must to specified, to a field which can take many possible values. The observed value of Lambda ~ 1/(9.3 Gyrs)^2(approximately10(−120)inPlanckunits)isdeterminedbyanewconstraintequationwhichfollowsfromtheapplicationofacausallyrestrictedvariationprinciple.Whenappliedtoourvisibleuniverse,themodelmakesatestablepredictionforthedimensionlessspatialcurvatureofOmegak0=−0.0056sb/0.5;wheresb 1/2isaQCDparameter.Requiringthataclassicalhistoryexist,ourmodeldeterminestheprobabilityofobservingagivenLambda.TheobservedCCvalue,whichwesuccessfullypredict,istypicalwithinourmodelevenbeforetheeffectsofanthropicselectionareincluded.Whenanthropicselectioneffectsareaccountedfor,wefindthattheobservedcoincidencebetweentLambda=Lambda(−1/2)andtheageoftheuniverse,tU,isatypicaloccurrenceinourmodel.IncontrasttomultiverseexplanationsoftheCCproblems,oursolutionisindependentofthechoiceofapriorweightingofdifferent (approximately 10^(-120) in Planck units) is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible universe, the model makes a testable prediction for the dimensionless spatial curvature of Omega_k0 = -0.0056 s_b/0.5; where s_b ~ 1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given Lambda. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t_Lambda = Lambda^(-1/2) and the age of the universe, t_U, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different \Lambda$-values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.Comment: 31 pages, 4 figures; v2: version accepted by Phys. Rev.

    Particle decays and stability on the de Sitter universe

    Full text link
    We study particle decay in de Sitter space-time as given by first order perturbation theory in a Lagrangian interacting quantum field theory. We study in detail the adiabatic limit of the perturbative amplitude and compute the "phase space" coefficient exactly in the case of two equal particles produced in the disintegration. We show that for fields with masses above a critical mass mcm_c there is no such thing as particle stability, so that decays forbidden in flat space-time do occur here. The lifetime of such a particle also turns out to be independent of its velocity when that lifetime is comparable with de Sitter radius. Particles with mass lower than critical have a completely different behavior: the masses of their decay products must obey quantification rules, and their lifetime is zero.Comment: Latex, 38 pages, 1 PostScript figure; added references, minor corrections and remark
    • …
    corecore