691 research outputs found
A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry
We describe the theory and first experimental work on our concept for
searching on earth for the presence of dark content of the vacuum (DCV) using
atom interferometry. Specifically, we have in mind any DCV that has not yet
been detected on a laboratory scale, but might manifest itself as dark energy
on the cosmological scale. The experimental method uses two atom
interferometers to cancel the effect of earth's gravity and diverse noise
sources. It depends upon two assumptions: first, that the DCV possesses some
space inhomogeneity in density, and second that it exerts a sufficiently strong
non-gravitational force on matter. The motion of the apparatus through the DCV
should then lead to an irregular variation in the detected matter-wave phase
shift. We discuss the nature of this signal and note the problem of
distinguishing it from instrumental noise. We also discuss the relation of our
experiment to what might be learned by studying the noise in gravitational wave
detectors such as LIGO.The paper concludes with a projection that a future
search of this nature might be carried out using an atom interferometer in an
orbiting satellite. The apparatus is now being constructed
Correspondence between Electro-Magnetic Field and other Dark Energies in Non-linear Electrodynamics
In this work, we have considered the flat FRW model of the universe filled
with electro-magnetic field. First, the Maxwell's electro-magnetic field in
linear form has been discussed and after that the modified Lagrangian in
non-linear form for accelerated universe has been considered. The corresponding
energy density and pressure for non-linear electro-magnetic field have been
calculated. We have found the condition such that the electro-magnetic field
generates dark energy. The correspondence between the electro-magnetic field
and the other dark energy candidates namely tachyonic field, DBI-essence,
Chaplygin gas, hessence dark energy, k-essenece and dilaton dark energy have
been investigated. We have also reconstructed the potential functions and the
scalar fields in this scenario.Comment: 11 pages, 7 figure
Is Cosmology Solved?
We have fossil evidence from the thermal background radiation that our
universe expanded from a considerably hotter denser state. We have a well
defined and testable description of the expansion, the relativistic
Friedmann-Lemaitre model. Its observational successes are impressive but I
think hardly enough for a convincing scientific case. The lists of
observational constraints and free hypotheses within the model have similar
lengths. The scorecard on the search for concordant measures of the mass
density parameter and the cosmological constant shows that the high density
Einstein-de Sitter model is challenged, but that we cannot choose between low
density models with and without a cosmological constant. That is, the
relativistic model is not strongly overconstrained, the usual test of a mature
theory. Work in progress will greatly improve the situation and may at last
yield a compelling test. If so, and the relativistic model survives, it will
close one line of research in cosmology: we will know the outlines of what
happened as our universe expanded and cooled from high density. It will not end
research: some of us will occupy ourselves with the details of how galaxies and
other large-scale structures came to be the way they are, others with the issue
of what our universe was doing before it was expanding. The former is being
driven by rapid observational advances. The latter is being driven mainly by
theory, but there are hints of observational guidance.Comment: 13 pages, 3 figures. To be published in PASP as part of the
proceedings of the Smithsonian debate, Is Cosmology Solved
Experimental Designs for Binary Data in Switching Measurements on Superconducting Josephson Junctions
We study the optimal design of switching measurements of small Josephson
junction circuits which operate in the macroscopic quantum tunnelling regime.
Starting from the D-optimality criterion we derive the optimal design for the
estimation of the unknown parameters of the underlying Gumbel type
distribution. As a practical method for the measurements, we propose a
sequential design that combines heuristic search for initial estimates and
maximum likelihood estimation. The presented design has immediate applications
in the area of superconducting electronics implying faster data acquisition.
The presented experimental results confirm the usefulness of the method. KEY
WORDS: optimal design, D-optimality, logistic regression, complementary log-log
link, quantum physics, escape measurement
The most storage economical Runge-Kutta methods for the solution of large systems of coupled first-order differential equations
AbstractIt is shown how the attainable minimum for the memory requirements of Runge-Kutta methods can be realised for methods of the third order. These economisable third order methods belong to a one parameter sub-family from which two particular members with low error bound are selected
Recombinant GPI-anchored TIMP-1 stimulates growth and migration of peritoneal mesothelial cells.
Mesothelial cells are critical in the pathogenesis of post-surgical intraabdominal adhesions as well as in the deterioration of the peritoneal membrane associated with long-term peritoneal dialysis. Mesothelial denudation is a pathophysiolocigally important finding in these processes. Matrix metalloproteinase (MMP) biology underlies aspects of mesothelial homeostasis as well as wound repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) moderate MMP activity. METHODS AND FINDING: By modifying human TIMP-1 through the addition of a glycosylphosphatidylinositol (GPI) anchor, a recombinant protein was generated that efficiently focuses TIMP-1 on the cell surface. Treatment of primary mesothelial cells with TIMP-1-GPI facilitates their mobilization and migration leading to a dramatic increase in the rate of wound experimental closure. Mesothelial cells treated with TIMP-1-GPI showed a dose dependent increase in cell proliferation, reduced secretion of MMP-2, MMP-9, TNF-α and urokinase-type plasminogen activator (uPA), but increased tissue plasminogen activator (t-PA). Treatment resulted in reduced expression and processing of latent TGF-β1. TIMP-1-GPI stimulated rapid and efficient in vitro wound closure. The agent enhanced mesothelial cell proliferation and migration and was bioactive in the nanogram range. The application of TIMP-1-GPI may represent a new approach for limiting or repairing damaged mesothelium
The Adventures of the Rocketeer: Accelerated Motion Under the Influence of Expanding Space
It is well known that interstellar travel is bounded by the finite speed of
light, but on very large scales any rocketeer would also need to consider the
influence of cosmological expansion on their journey. This paper examines
accelerated journeys within the framework of Friedmann-
Lemaitre-Robertson-Walker universes, illustrating how the duration of a fixed
acceleration sharply divides exploration over interstellar and intergalactic
distances. Furthermore, we show how the universal expansion increases the
difficulty of intergalactic navigation, with small uncertainties in
cosmological parameters resulting in significantly large deviations. This paper
also shows that, contrary to simplistic ideas, the motion of any rocketeer is
indistinguishable from Newtonian gravity if the acceleration is kept small.Comment: 9 pages, 7 figures, accepted for publication in PAS
A Testable Solution of the Cosmological Constant and Coincidence Problems
We present a new solution to the cosmological constant (CC) and coincidence
problems in which the observed value of the CC, , is linked to other
observable properties of the universe. This is achieved by promoting the CC
from a parameter which must to specified, to a field which can take many
possible values. The observed value of Lambda ~ 1/(9.3 Gyrs)^2\Lambda$-values
and does not rely on anthropic selection effects. Our model includes no
unnatural small parameters and does not require the introduction of new
dynamical scalar fields or modifications to general relativity, and it can be
tested by astronomical observations in the near future.Comment: 31 pages, 4 figures; v2: version accepted by Phys. Rev.
Particle decays and stability on the de Sitter universe
We study particle decay in de Sitter space-time as given by first order
perturbation theory in a Lagrangian interacting quantum field theory. We study
in detail the adiabatic limit of the perturbative amplitude and compute the
"phase space" coefficient exactly in the case of two equal particles produced
in the disintegration. We show that for fields with masses above a critical
mass there is no such thing as particle stability, so that decays
forbidden in flat space-time do occur here. The lifetime of such a particle
also turns out to be independent of its velocity when that lifetime is
comparable with de Sitter radius. Particles with mass lower than critical have
a completely different behavior: the masses of their decay products must obey
quantification rules, and their lifetime is zero.Comment: Latex, 38 pages, 1 PostScript figure; added references, minor
corrections and remark
- …