100 research outputs found

    On Modeling Coverage and Rate of Random Cellular Networks under Generic Channel Fading

    Get PDF
    In this paper we provide an analytic framework for computing the expected downlink coverage probability, and the associated data rate of cellular networks, where base stations are distributed in a random manner. The provided expressions are in computable integral forms that accommodate generic channel fading conditions. We develop these expressions by modelling the cellular interference using stochastic geometry analysis, then we employ them for comparing the coverage resulting from various channel fading conditions namely Rayleigh and Rician fading, in addition to the fading-less channel. Furthermore, we expand the work to accommodate the effects of random frequency reuse on the cellular coverage and rate. Monte-Carlo simulations are conducted to validate the theoretical analysis, where the results show a very close match

    UWB Cognitive Radios

    Get PDF

    Chapter UWB Cognitive Radios

    Get PDF
    Management & management technique

    Detection of Signals in Colored Noise: Leading Eigenvalue Test for Non-central FF-matrices

    Full text link
    This paper investigates the signal detection problem in colored noise with an unknown covariance matrix. In particular, we focus on detecting an unknown non-random signal by capitalizing on the leading eigenvalue of the whitened sample covariance matrix as the test statistic (a.k.a. Roy's largest root test). Since the unknown signal is non-random, the whitened sample covariance matrix turns out to have a non-central FF-distribution. This distribution assumes a singular or non-singular form depending on whether the number of observations p≶p\lessgtr the system dimensionality mm. Therefore, we statistically characterize the leading eigenvalue of the singular and non-singular FF-matrices by deriving their cumulative distribution functions (c.d.f.). Subsequently, they have been utilized in deriving the corresponding receiver operating characteristic (ROC) profiles. We also extend our analysis into the high dimensional domain. It turns out that, when the signal is sufficiently strong, the maximum eigenvalue can reliably detect it in this regime. Nevertheless, weak signals cannot be detected in the high dimensional regime with the leading eigenvalue.Comment: 6 pages, 2 figures, conferenc

    Dynamic Cooperative MAC Optimization in RSU-Enhanced VANETs: A Distributed Approach

    Full text link
    This paper presents an optimization approach for cooperative Medium Access Control (MAC) techniques in Vehicular Ad Hoc Networks (VANETs) equipped with Roadside Unit (RSU) to enhance network throughput. Our method employs a distributed cooperative MAC scheme based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol, featuring selective RSU probing and adaptive transmission. It utilizes a dual timescale channel access framework, with a ``large-scale'' phase accounting for gradual changes in vehicle locations and a ``small-scale'' phase adapting to rapid channel fluctuations. We propose the RSU Probing and Cooperative Access (RPCA) strategy, a two-stage approach based on dynamic inter-vehicle distances from the RSU. Using optimal sequential planned decision theory, we rigorously prove its optimality in maximizing average system throughput per large-scale phase. For practical implementation in VANETs, we develop a distributed MAC algorithm with periodic location updates. It adjusts thresholds based on inter-vehicle and vehicle-RSU distances during the large-scale phase and accesses channels following the RPCA strategy with updated thresholds during the small-scale phase. Simulation results confirm the effectiveness and efficiency of our algorithm.Comment: 6 pages, 5 figures, IEEE ICC 202
    • …
    corecore