
Noname manuscript No.
(will be inserted by the editor)

On Modeling Coverage and Rate of Random Cellular
Networks under Generic Channel Fading

Akram Al-Hourani,
Sithamparanathan Kandeepan

the date of receipt and acceptance should be inserted later

Abstract In this paper we provide an analytic framework for computing the
expected downlink coverage probability, and the associated data rate of cellular
networks, where base stations are distributed in a random manner. The provided
expressions are in computable integral forms that accommodate generic channel
fading conditions. We develop these expressions by modelling the cellular interfer-
ence using stochastic geometry analysis, then we employ them for comparing the
coverage resulting from various channel fading conditions namely Rayleigh and
Rician fading, in addition to the fading-less channel. Furthermore, we expand the
work to accommodate the effects of random frequency reuse on the cellular cov-
erage and rate. Monte-Carlo simulations are conducted to validate the theoretical
analysis, where the results show a very close match.

Keywords Stochastic geometry · cellular network modelling · coverage probabil-
ity · network rate

1 Introduction

The vast deployment scale of cellular communication has made it as one of the
most ubiquitously available piece of infrastructure. The notable expansion rate of
cellular networks is referred to the accelerating demand generated by mobile users,
where network operators are endeavouring to bridge the gap between traffic load
and the available network capacity by deploying additional base stations (BS). It
is anticipated that within the next 5 years a data-traffic growth of around 10 folds
will take place in cellular networks alone [1].

The locations of the deployed base stations, are usually constrained by many
factors such as economical, urban planning codes, and the availability of land/utility
etc. these factors are very difficult to control and to predict, which leads to an in-
creasing randomness in the BS locations, where the theoretical hexagonal model
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is no longer feasible [2, 3]. Due to the increasing complexity of cellular network,
designers and researchers utilize simulation tools for predicting network coverage
and performance. Such approach is widely accepted in the industry, however it
can not give an analytical insight of the influence contributed by the vast simula-
tion parameters. Rather, it provides a detailed case-specific solution with neither
tractability nor flexibility.

Analytical insight of network dynamics is an essential enabler for strategic
planning and long-term economical modelling [4]. And in order to capture the
increasing irregularity of the network deployment, stochastic geometry models [5–
9] are recently gaining a paramount interest for studying wireless cellular networks.
Stochastic geometry allows the analytical understanding of the performance of
modern cellular technologies such as cognitive radios [10], heterogeneous networks,
fractional frequency reuse [11] and device to device communications [12, 13], in
addition to the fundamental coverage and capacity of the cellular network [2,3,14,
15]. The most popular assumption in the literature for the radio power fading is
the Rayleigh channel, where the distribution function of the received power takes
a simple exponential shape. This assumption allows tractability and enormously
simplifies the computation of expressions. However, the desired link might favour
a better performance than Rayleigh model that is usually considered as the worst
case scenario fading [16].

Understanding this gap in the literature, we propose in this paper an ana-
lytical approach for studying the coverage and the data rate of cellular networks
under generic channel fading conditions, accommodating not only the fast-fading
behaviour of the channel but also the possible effects of shadowing variation. We
first model the cellular interference in a random cellular network, and then we
study the expected performance metrics as spatially averaged over the entire net-
work. In addition we demonstrate the effects on the coverage probability resulting
from different channel fading scenarios namely; (i) fading-less channel, (ii) Rayleigh
channel and (iii) Rician channel. We verify our analytical approach using Monte-
Carlo simulations by running repeated random network deployments and obtaining
the spatial average of the signal-to-noise-plus-interference ratio (SINR). These re-
sults are used to validate the analytical calculations obtained using the integral
forms. The contribution of the paper could be summarized in the following points:

– It provides a generic formula (the coverage equation) for calculating the ex-
pected service success probability (or the coverage probability) in random cel-
lular networks, under generic channel fading conditions.

– The coverage equation is flexible to allow different fading models for the serving
signal from one side and the interfering signals from the other side.

– The paper provides a practical method to compute the expected data rate in
a random cellular network, without resorting to complicated simulations.

The rest of this paper is structured as the following: in Section 2 we provide
a literature background and identify the key studies that our work is based upon.
In Section 3 we build the network model and illustrate the implemented channel
models. The analytical study of the cellular interference is presented in Section 4,
while in Section 5 we derive the coverage equation that describes the probability of
successful communication in a computable integral form, we employ this equation
for studying three different radio channels in Section 6. Section 7 explains our
approach in estimating the network data rate. A comparison with Monte-Carlo
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simulations is provided in Section 8. Finally in Section 9 we draw our conclusion
remarks and the prospective research paradigms.

2 Related Work

Several recent introductory works are available on stochastic geometry in the con-
text of wireless networks [5, 17, 18]. However, some of the earliest work on this
regards dates back to the 1970-1990 such as [4, 19, 20]. Since then, several leaps
have taken place, for example the work in [21] draws a mathematical framework
for the statistical distribution of the interference generated by random wireless
networks, where in our derivation of cellular interference we follow a similar ap-
proach, but taking into consideration the specific properties of cellular networks.
Other works related to interference can be found in [22] addressing slotted ALOHA
interference topic assuming a Rayleigh fading channel, while the authors in [23]
address a general fading channel and obtain the optimum transmission probability
in slotted ALOHA network. Also the work in [24] addresses inter-user interference
in an extensive experiment using both slotted and unslotted CSMA/CA. In the
context of interference, the work in [25] addresses clustered interferers but it is
distinguished by addressing the amplitude and phase of the interference where the
interfering signals can interact constructively or detractively, while that the vast
of the literature deals with the aggregated power of the interferers, that is the
algebraic sum of the power of all interfering signals. In [26] the authors employ
stochastic geometry analysis on studying intercell interference coordination (ICIC)
by muting the transmission from K number of neighbouring stations on specific
resource blocks.

The tractability facilitated by the Poisson point process (PPP) attracts re-
searches to represent the BS locations according to this process. However, other
studies in this field capture the possible repulsion between base stations, utilizing
determinantal point processes [2, 15]. The accuracy of PPP is proven to increase
when heavy shadowing conditions affect the network [27], making PPP a valid
assumption in most of practical network deployment scenarios.

Applying stochastic geometry for studying cellular communication is an ap-
pealing approach for what it can yield of analytical estimations of the different
attributes affecting such networks. For example the work in [3] addresses the proba-
bility of coverage in cellular networks assuming a Rayleigh fading channel affecting
the serving signal, while the work in [28] extends the same approach for multi-tier
heterogeneous cellular network, where base stations are implemented with different
power and capacity levels. The work in [29] provides a mathematical framework to
compute the expected cellular data rate without the need to obtain the coverage
probability, the utilized method depends on the moment generating function of
the interference.

The main difference in our work presented here, is that the coverage and ca-
pacity estimations can be obtained for any stochastic fading channel model, with
the freedom to select different stochastic processes for the serving signal and for
the interfering ones.
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3 Network Model

Achieving high accuracy in estimating network performance requires system level
simulation, usually performed for a specific wireless technology that is implemented
on a deterministic geometrical environment. Such simulations are quite useful in
practical deployments of networks, for example, when wireless operators are de-
ploying a new service, or when they are upgrading their infrastructure. However,
an analytical tractable approach is preferred to get an insight of the different
factors contributing to the network performance [2, 3, 13, 15, 23, 30]. These fac-
tors include (but are not limited to) base stations density, fading models, and
resource allocation. Although tractable analysis can be achieved using simplified
approximation of the deterministic hexagonal models [31], the drawback is that
these models are very simplistic and might not reflect the true behaviour of the
network. Practical cellular network deployments include vast randomness in the
location of base stations, which cannot be captured by deterministic models. From
this perspective, stochastic geometry is widely used in the research field to model
the random location of base stations, where for simplicity it is common to assume
a homogeneous PPP to model the BS locations. Accordingly, and in order to pre-
serve the tractability we adopt the PPP network model assuming homogeneous
BS intensity of value λ (BS per unit area). The point process itself is denoted as
Φ = {Xn ∈ R2}n∈N and is assumed to take place in the two dimensional Euclidean
space R2. Mobile users are typically associated to the BS of highest received power,
which is characterised with random behaviour (fast fading and shadowing). Thus,
the cellular boundaries are rather probabilistic due to the random effect of fading.
However, taking aside the fading effects, we can draw the average cellular bound-
ary of each of the PPP points, simply by taking its Voronoi cell, defined as the
region where all users are closer to the serving BS from any other BS [5]:

V (Xn)
4
= {u ∈ R2 : ||Xn − u|| ≤ ||Xi − u|| ∀Xi ∈ Φ \ {Xn}}, (1)

where V (Xn) is the Voronoi cell of a base station Xn, and Φ is the set of base
stations. This structure of the cellular system is called the Poisson Voronoi Tes-
sellation (PVT) [6]. We depict a sample realization of a PVT layout in Fig. 1.

The reason that we can rely on PVT for determining the cell association is
that the mean path-loss is monotonically increasing with respect to distance, so
having a closer distance to a certain BS will result is a better average received
power, than any other BS.

We consider a homogeneous network with all base stations having the same
transmit power Po, rather than a multi-tier heterogeneous network composed of
base stations of variable power capabilities. No power control is accounted in our
model, so that base stations are assumed to continuously transmit at a constant
power level. Without loss of generality, we study a user located at the origin,
where its statistical behaviour is typical for all other users in the network, we call
this mobile user as the typical user, where we estimate its network performance
for all possible spatial realizations of the random network. In other words, we
implicitly assume a homogeneous distribution of network users, so that having the
performance of the typical user will reflect the spatial average of all users in the
network.
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Fig. 1 Cellular Poisson Voronoi tessellation, indicating the typical user located at the origin.

3.1 Channel Model

Electromagnetic signals travelling between a BS and a receiver encounter power
losses due to the propagation nature of the surrounding environment, resulting
mainly from scattering, diffraction, reflection and absorption. These power losses
are characterized with random behaviour and usually categorized into two distinct
groups according to their rate of change, namely fast fading and slow fading or
shadowing, where the random effect of these two categories is independent. Slow
fading results mainly from the electromagnetic shadowing of obstacles, the random
behaviour of the slow fading is modelled here as a random variable denoted as g,
where it is widely accepted to be considered to follow a log normal distribution
according to the following:

g = exp (σN) : N ∼ N (0, 1) (2)
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and σ = ln(10)
10 σdB represents the standard deviation, usually σdB is provided,

representing the standard deviation in Decibel. The Gaussian distribution of zero
mean and unity standard deviation is denoted as N (0, 1).

On the other hand, the random interaction of multipath components at the
receiver has a fast varying nature, causing rapid changes in the signal power. This
effect is termed as the fast fading and modelled here by a generic random variable
h, that can represent any of the common fast fading channel models, such as
Rayleigh, Rician and m-Nakagami [32].

The mean loss due to the distance (the path-loss) is modeled in a log-distance
relation [16] [33], so that at a location x the mean path-loss between the origin
and x is given by the following:

l(x)
4
= ||x||−α, (3)

where ||.|| represents the Euclidean measure in R2, i.e. the distance between a
source base station and the mobile station under study. Accordingly the resulting
received power at a certain location will have the following expression:

PRX = Po.g.h.l(x), (4)

where Po represents the common power at which all base stations are transmitting.
Note that in this paper we represent random variables in bold for convenience and
ease of interpretation.

4 Modeling Cellular Interference

In our model, we assume that the BSs have a unity reuse factor. That is, for
the typical mobile user, all BSs except the serving one are interfering with the
downlink signal. Then the aggregated interference is given by

I =
∑
ΦI

Pognhnl(x) =
∑
ΦI

Pnl(Rn), (5)

where ΦI = Φ \ {Xo} is the set of interferers, Xo represents the serving BS,
and {Pn}n∈N+ is a random variable vector having identical and independently
distributed (i.i.d) elements, so that P = Pogh. The BSs’ distances {Rn}n∈N+

constitute a random vector.
The illustration of a typical receiver located at the origin is shown in Fig. 2,

where it is important to note that according to the assumed cellular association,
all interfering BSs should be located outside the ball b(o,Ro) of radius Ro and
centred at the origin, where Ro is the distance to the serving BS, which is the
contact distance to Φ.

The statistical distribution of the interference cannot be obtained for a generic
case [21]; however, we can still deduce its Characteristic Function (CF) φI(ω),
where the CF for a random variable X is defined as ϕX(ω) = E

[
eωX

]
, where

 =
√
−1. If the characteristic function is identified, we can utilize the Gil-Pelaez’s

inversion theorem [34] to compute the Cumulative Distribution Function (CDF)
of X according to the following:

FX(x) =
1

2
− 1

π

∫ ∞
0

1

ω
Im [ϕX(ω) exp(−ωx)] dω. (6)
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Fig. 2 All interfering base stations are located outside the ball b(o,Ro).

Proposition 1 The characteristic function of the aggregated interference in a cel-
lular network is given by:

ϕI(ω) = exp (−2πλβ) , where (7)

β(ω) =

∫ ∞
Ro

[1− ϕP (ωl(r))] rdr. (8)

Proof We start from the definition of the characteristic function of the interference,
where the expectation should be performed over (i) the stochastic processes in P
and (ii) over the geometrical stochastic process of ΦI :

ϕI(ω) = E
[
eωI

]
= EΦIEP

[
exp

(
ω
∑
ΦI

Pnl(Rn)

)]

= EΦIEP

[∏
ΦI

exp (ωPnl(Rn))

]
(a)
= EΦI

[∏
ΦI

EP [exp (ωPnl(Rn))]

]
(b)
= EΦI

[∏
ΦI

ϕP (ωl(Rn))

]
, (9)

where (a) follows from the fact that the combined channel process P = Pogh is in-
dependent of the geometrical process and (b) follows directly from the definition of
the CF. Now we can apply the probability generating functional of a homogeneous
PPP on R2 [5], where for a function f(x) the following relation is satisfied:

E

[∏
ΦI

f(x)

]
= exp

(
−2πλ

∫
I

[1− f(x)]rdr

)
. (10)
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The integration variable r ∈ I is the distance range where the active interferers
are located, that is I = (Ro,∞). Accordingly, we can write (9) as the following:

ϕI(ω) = exp

(
−2πλ

∫ ∞
Ro

[1− ϕP (ωl(r))] rdr

)
. (11)

Hence, Proposition 1 is proved.

For a log-distance mean path-loss model, (8) yields:

β(ω) =

∫ ∞
Ro

[
1− ϕP

(
ωr−α

)
rdr
]
, noting that (12)

ϕP
(
ωr−α

)
= Eg,h

[
exp

(
ωr−αPogh

)]
. (13)

Accordingly, we can rewrite β as the following:

β(ω) = Eg,h

[∫ ∞
Ro

[
1 − exp

(
ωr−αPogh

)]]
rdr

= Eg,h

[
−
Ro

2

2
+

(−Poghω)2/α

α

[
Γ

(
−2

α
,−PoghRo

−αω

)
− Γ

(
−2

α

)]]
, (14)

where Γ (.) and Γ (., .) are the Gamma and the incomplete Gamma functions re-
spectively.

5 Modeling Coverage Probability

Signal to Interference and Noise Ratio (SINR) is an important measure that can
determine the link throughput and the availability of the wireless service. The
SINR represents the strength of the target signal compared to the counterpart
interferers’ combined power plus the thermal noise generated inside the receiver’s
electronics. The latter can be represented as an Additive White Gaussian Noise
(AWGN). The SINR is expressed as: SINR = S

I+W , where S = Pohogol(Ro) is
the desired signal which carries the needed information from the serving BS, I is
the aggregate interference power, and W is the AWGN noise power. The random
variables ho and go model the fast and slow fading respectively of the serving BS
channel.

Theorem 1 The probability that a receiver to be covered by a certain level of
cellular wireless service is given by:

pc = Eho,go

[∫
r>0

FI

(
Pohogo
Trα

−W
)
fRo(r)dr

]
. (15)

Proof The outage of wireless service occurs when the SINR level at a receiver falls
below a threshold T . Accordingly, we can express the link-level success probability
at a given distance Ro and a given ho, go as:

pL = P[SINR ≥ T |ho, go, Ro] = P[I ≤ S

T
−W ] = FI

(
S

T
−W

)
, (16)
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Fig. 3 The different dynamics affecting the coverage probability.

where FI is the cumulative distribution function (CDF) of the interference I. Thus,
the success probability is found by averaging over Ro, ho, and go as:

pc = ERo,ho,go [pL] = Eho,go [ERo [pL]] . (17)

Accordingly, we can obtain the result in (15) by applying the expectation rule
over the contact distance Ro, having a probability density function of fRo(r) =
2λπr exp

(
−λπr2

)
in a PPP cellular network. We should note that FI is computed

using Gil-Pelaez’s inversion formula given in (6).

We call (15) the coverage equation, constituting the main result of this work
allowing the evaluation of the averaged network-level success probability. The var-
ious dynamics affecting the cellular service success probability are visualized in
Fig. 3, namely (i) the base station density, (ii) the common base stations’ power,
(iii) the path-loss model, (iv) slow fading model, (v) fast fading model, (vi) noise
level, and finally (vii) the target SINR threshold.

6 Network Performance Analysis

In this section, we first experiment a channel affected by a path-loss only, then we
account for the fast-fading impairing both the serving BS signal and the interfering
signals.

6.1 Path-Loss Only Scenario

By taking the effect of the path-loss only (i.e. h = 1 and g = 1) we can produce
an initial understanding of the cellular coverage dynamics, representing the upper
bound of the channel performance. According to (14), β can be reduced to:

β(ω) = −Ro
2

2
+

(−Poω)2/α

α

[
Γ

(
−2

α
,−PoRo−αω

)
− Γ

(
−2

α

)]
. (18)

We substitute different values of the path-loss exponent α, assuming here that
the cellular network is interference limited, so that the noise can be neglected (i.e.,
W → 0). The results are counter-intuitive, as indicated in Fig. 4, a better coverage
in a random cellular network is achieved for higher values of the path-loss exponent,
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Fig. 4 The coverage probability, when adopting log-distance path-loss channel model without
considering fading effects.

indicating that a heavier path-loss environment affects the aggregated interference
more strongly than affecting the serving signal power. Secondly, we compare the
coverage probability for different intensities of BSs assuming a constant path-loss
exponent. The results indicate that the BS intensity has insignificant effect on the
coverage probability when the network is interference limited. Note that the same
observation was reported in [3] and [15] but for a Rayleigh fading channel.

6.2 Rayleigh Fading Scenario

In this scenario, we assume that both the serving and the interfering signals are
impaired with Rayleigh fading. Namely, an exponential distribution random vari-
able with a unity mean, where the probability density function (PDF) of h is given
by fh(x) = exp(−x). Applying this to (14), and by neglecting the shadowing vari-
ations (i.e. g = 1), the result can be reduced to the following form:

β(ω) = −
Ro

2

2
+
π

α
(−Poω)2/α csc

(
2π

α

)
+ 

Ro
2+α

(α+ 2)Poω
2F1

(
1,
α+ 2

α
,

2

α
+ 2,−

Ro
α

Poω

)
,

(19)

where 2F1(., ., ., .) is the hypergeometric function.
We perform numerical integration to calculate the coverage probability as per

(15) for 5 different path-loss exponent values. We observe that higher path-loss
exponent values have a favourable effect on the service success probability. How-
ever, Rayleigh scenario gives lower success probability than fading-less scenario,
even though both the interference and the serving signals are affected by the same
fading behaviour. We stress the point that the difference between the framework
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Fig. 5 The coverage probability, for log-distance path-loss and Rayleigh fast-fading, showing
a comparison with the results of [3].

presented in this paper and the one in [3] is the flexibility provided in choosing
the fading model of the serving channel, so it is not limited to Rayleigh only. This
comes at the cost of more complex integral computation. We verify the results of
the coverage equation with the ones obtained in [3], and depict the comparison in
Fig. 5.

6.3 Rayleigh Interferers with Rician Serving Signal

Rician distributed fading can represent a wireless channel with more flexibility by
tuning the K factor which represents the ratio of the LoS power to the sum of
the powers from the defused multipath components. The probability distribution
function describing a Rician fading channel gain is given as:

fh(x) = (K + 1)e−x(K+1)−KIo
(√

4xK(K + 1)
)
, (20)

where Io(.) is the modified Bessel function of the first kind. In this scenario we
assume that the serving signal follows a Rician distribution, while the interfering
signals follow a Rayleigh distribution, thus β(ω) follows (19). The only difference
will be in calculating the expectancy in the coverage equation (15), that is over
a Rician distributed ho. The results are illustrated in Fig. 6, observing that the
coverage probability is more sensitive to the distribution of the serving signal for
lower SINR thresholds, a case which represents the edge users of the cell.
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Fig. 6 The coverage probability, for Rayleigh interfering signals and Rician serving signal.

6.4 Frequency Reuse

It can be clearly noticed how low is the SINR performance in the previous illus-
trated scenarios, also we note that increasing the density of base stations does not
lead to a change in the coverage performance when the network is interference lim-
ited. Accordingly, resource management techniques should be applied to mitigate
the co-channel interference between cells [26]. The spatial reuse of radio resource
has always been the essence of cellular communication. However, there is a trade
off between coverage performance and the spatial spectral efficiency. For example,
when applying a frequency reuse scheme, the spectral efficiency will drop since the
available spectrum for each cell will reduce. However a frequency reuse scheme will
lessen the interference and boost the SINR performance.

In order to get a better insight of the expected network performance and how
it is affected by radio resource coordination, we adopt the random frequency reuse
scheme due to its simplicity and tractability. In this scheme, base stations can
choose from some ∆ available radio frequencies. Thus each BS has a probability of
a certain frequency assignment equal to 1

∆ . In this case, the co-channel interference
will only be received from base stations utilizing the same frequency. The layout of
the PVT will appear similar to Fig. 7, where co-channel base stations are coloured
the same. It is obvious that this channel assignment is not optimal, since co-channel
cells are allowed to be mutual neighbours. But as mentioned before, the random
frequency reuse greatly facilitates the mathematical analysis.

In Fig. 8 we plot the simulation results of the random frequency reuse scheme,
showing the probability of the service success pc at an SINR threshold of T = 10dB
verses a range of reuse factor ∆. An interesting observation is that the channel
fading effect becomes more obvious for higher reuse factor, when comparing the
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Fig. 7 The layout of a random frequency reuse scheme in a Poisson Voronoi tessellation
cellular network.

three scenarios as explained in the subsections of Section 5. Simulation procedure
will be explained in detail in Section 8.

To analytically study the effect of random frequency reuse, we examine the
new distribution of the interferers, noting that it follows a new PPP, since the
independent thinning of a PPP will also yield a PPP [8] with a new intensity equal
to λ

∆ . In this case the coverage equation (15) resulted from Theorem 1 still holds,
except that the aggregated interference follows a different stochastic distribution;
the new CDF of the interference is denoted F̂I so that its characteristic function
is given by the following:

ϕ̂I(ω) = exp

(
−2π

λ

∆
β

)
, (21)

resulting in a reduced interference effect, thus a better coverage success probability.
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7 Network Rate

A practical system would perform less than the maximum limit set by Shannon
capacity theorem. Accordingly we utilize a practical method [35] to estimate the

user’s throughput (data rate) per/Hz following the expression: ρ = ln
(

1 + SINR
SINRo

)
,

where SINRo is a system specific parameter considered here as a constant, repre-
senting the gap between Shannon limit and the achievable rate of the system. The
estimated network rate can be calculated as:

ρc = E[ρ] = E
[
ln

(
1 +

γ

γo

)]
=

∫ ∞
γmin

[
ln

(
1 +

v

γo

)]
fγ(v)dv, (22)

where the symbol γ is used to represent the SINR, v is merely the integration vari-
able, while γmin is the effective SINR limit where no useful communication can
take place below γmin. This proposed method can capture the effect of adaptive
modulation and coding schemes in communication systems. This method requires
obtaining the PDF of the SINR, i.e., fγ , which can be approximated numerically
from the points calculated in plotting the service success probability presented ear-
lier, since fγ = − d

dvF
c
γ (v), where F cγ is the complementary cumulative distribution

function (CCDF) of the SINR as plotted in Figs. 4-6. By means of trapezoidal in-
tegration, the resulting rate is presented in Fig. 9, showing the effect of γmin on
the network performance, where low influence of γmin can be noted at the high
extent of the γmin-axis.

Alternatively, at the cost of additional computational efforts we can utilize
the following theorem to calculate the expected rate directly from the system’s
parameters:
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Fig. 9 The expected network rate obtained using trapezoidal integration of equation (22),
versus system’s minimum SINR γmin and γo = 1. (S) refers to the serving signal and (I) refers
to the interfering signals.

Theorem 2 The expected rate of a cellular network can be calculated from the
following expression:

ρc = Eho,go

[∫
r>0

∫ ∞
ρmin

FI

(
Pohogo

γo(ev − 1)rα
−W

)
fRo(r)dvdr

]
. (23)

Proof We need to obtain the expectancy of the rate over three stochastic processes:
(i) the spatial properties of the point process, (ii) the channel fading distributions
of the serving signal, and (iii) the distribution of the interfering signals. Hence

ρc = E
[
ln

(
1 +

γ

γo

)]
= Eho,go,Ro

[
EI
[
ln

(
1 +

PohogoRo
−α

γo(I +W )

)]]
(a)
= Eho,go,Ro

[∫ ∞
ρmin

P
[
ln

(
1 +

PohogoR
−α
o

γo(I +W )

)
> v

]
dv

]
= Eho,go,Ro

[∫ ∞
ρmin

P
[
I <

Pohogo
γo(ev − 1)Rαo

−W
]

dv

]
, (24)

where ρmin = ln
(

1 + γmin

γo

)
is the minimum achievable data rates, (a) follows from

the fact that, for a positive random variable X, E[X] =
∫∞
0

P(X > v)dv, a method
which was also used in [3]. The final result of the theorem follows from averaging
over Ro.
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8 Simulation Results

In order to verify the coverage equation presented in Section 5, we perform Monte-
Carlo simulations for more than 6,500 users distributed uniformly within a PVT
cellular network. The entire simulation scenario is repeated for 80 runs, where in
each run we draw a large number of BS from a Poisson distributed random variable,
and deploy these BSs homogeneously over the test map, the simulation results
converge very quickly and simulating more that 20 runs has no visual effect on the
output plot, where the sum of the total number of simulated links exceeds 500,000.
The power received from all BSs are combined at every mobile user taking into
consideration the stochastic effects of the radio channel by randomly generating
the individual channel gain. The SINR value is stored for each receiver, and then we
obtain the resulting empirical Complementary Cumulative Distribution Function
(CCDF). Noting that the CCDF of the SINR is equivalent by definition to the
coverage probability, because: F cγ (T ) = 1− Fγ(T ) = P(γ > T ) = pc.

The three different scenarios explained in Section 5 are simulated, namely:
in scenario (1) a deterministic channel is used for all BSs, where the path-loss
follows log-distance law with exponent α = 4. In scenario (2) the effect of Rayleigh
channel fading is added to all BSs including the serving BS. While in scenario (3)
the serving BS is assumed to favour a Rician channel with a factor K = 10
dB. The results of the simulation runs for all three scenarios are shown in Fig.
10. We observe a close match between the analytical integration of the coverage
equation from one side and Monte-Carlo simulations from another side. Also we
notice how the performance seems to be bounded by the deterministic channel
conditions (fading-less scenario 1) as the upper bound and the Rayleigh fading
(scenario 2) as the lower bound. An important conclusion can be drawn here that
the performance is strongly dependent on the serving channel fading conditions
rather than the interfering signals stochastic distribution.

9 Conclusion

This paper has provided a mathematical framework to analytically compute the
coverage and rate of random cellular networks under generic channel fading con-
ditions. Two main observations have been made. Firstly, the stochastic process of
the radio channel largely affects the coverage performance when considering lower
SINR thresholds (e.g., the performance of cell edge users). Secondly, the density
of base stations does not affect the cellular coverage when the network is inter-
ference limited, regardless of the stochastic process of the channel. For obtaining
the expected rate of a cellular network two methods have been illustrated. The
first method is based on trapezoidal integration and the second method is based
on a computable integration formula. Future work will include the modelling of
different cellular interference coordination schemes under this framework.
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